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Abstract—In this work we provide comprehensive analytical
model for Bitcoin distribution network. We apply Jackson
network model on the whole Bitcoin network where individual
nodes operate as priority M/G/1 queuing systems. Data arrival
process to the nodes is modeled as a non-homogeneous Poisson
process in which the data arrival rates to the nodes are derived
from the analytical model of gossip data delivery protocol.
This model considers random probability distribution of node
connectivity. Performance results include network distribution
time for blocks, node response time for blocks, and populations
of data distribution algorithms as functions on network size.
Usefulness of this model is demonstrated by efficiently computing
the forking probability for the Bitcoin blockchain.

I. INTRODUCTION

Current applications of blockchain technology are mostly
focused on financial area, namely on the implementation of
replicated ledgers holding financial data such as Bitcoin [1],
[2], [14], [15]. The distributed ledger is implemented over a
group of connected processing nodes. Ledger data is stored at
each node as single linked list of data blocks that contain
linked data primitives known as transactions. Transactions
arrive at individual nodes which have to verify transaction
inputs versus outputs, i.e., whether the value of all claimed
inputs is equal to or larger than the sum of new outputs [18],
before distributing those transactions to the network for further
verification by other nodes.

Transactions verified by a node are linked into one data
block as soon as that node has found a nonce (i.e., a random
number) which is inserted in the block header with the goal
of obtaining the block hash with the required number of
leading zeros; this approach is often referred to as proof of
work, or PoW. Similar to transactions, the block is distributed
to the network for further verification; the node that has
created the block is known as a block miner. Upon receiving
a new block nodes which were in process of verifying the
same set of transaction will abandon their efforts, verify
the newly arrived block and insert it into their ledgers, and
continue transaction verification from the pool of unverified
transactions. To regulate the rate of block mining, the Bitcoin
protocol regulates the difficulty of computing the nonce in the
block header so that new block can be mined once every 10
minutes on the average [15].

Long delays in forwarding the blocks or transaction may
open many security vulnerabilities [6], [5], [19], [17], [16],
[11], [3] which affect the consistency of the ledger. Perhaps
the most important one is forking which occurs when two
(or more) nodes mine and transmit the block in the time

window when neither of the blocks has completed distribution
through the network. In this case some nodes will mount one
or the other block as the head of the blockchain, leaving the
distributed ledger in an inconsistent state. Forking can be used
for security attack if the attacker can generate blocks at a
sufficiently high rate and can, thus, build its own blockchain
extension to take over blockchain head. For such situations,
fast propagation of transactions and blocks is of paramount
importance.

In this work we focus on a detailed analytical model of
Bitcoin’s blockchain P2P network, data distribution (gossip)
algorithm, and queuing issues at individual nodes. Purpose
of this model is to find accurate probability distributions of
block and transaction delivery times in the Bitcoin network.
Such model will enable us to analyze probabilities of success
of various situations like forking, double spending attack and
many others. Analytical model of data distribution algorithm
for the Bitcoin network is crucial for finding data distribution
delays and for analysis of security attacks. Variability of the
number of TCP connections among the nodes affect data
distribution algorithm and introduce variability of data rates
coming to nodes. This introduces non-homogenous Poisson
process of data arrivals at network nodes. This issue affects
further queuing analysis of node which needs to be done in
M/G/1 manner due to unknown properties of service time [20].
Another problem is that block and transaction traffic need to
be separated in different queues and handled in priority order.
Solving all these issues allows analysis of the Bitcoin network
using the Jackson network approach [13]. In this paper, due
to space limitations, we present the analysis for block traffic
only, with elements of transaction traffic analysis used where
necessary.

The paper is organized as follows: Section II develops the
model of data distribution protocol. Model of incoming data
rates is given in Section III. In Section IV we present the
queuing model of distribution network, and in Section V we
present the model of the total data distribution time in the
network with derivation of forking probability. Performance
evaluation is presented in Section VI, while Section VII
concludes the paper.

II. BLOCK AND TRANSACTION DISTRIBUTION AND
PROPAGATION PROTOCOL

We consider Bitcoin network with /N nodes. Node connec-
tivity is presented as a N X N symmetric random matrix in
which each node has a random number of TCP connections
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Fig. 1. Block and transaction distribution in Bitcoin.

towards its neighbors. This probability distribution can be
expressed with the Probability Generating Function (PGF)
Cn(z) = Yoime*  pez' with mean value Cn = Cn/(1).
Mass probabilities pc; reflect connectivity patterns and dynam-
ics of the network. Diameter of the network Dy, oy (.) depends
on the network size and connectivity among the nodes, and
the probability that nodes A and B are connected is

3 gl -G 1)

Block and transaction delivery protocol resembles to some
extent the randomized gossip protocol from [12]. It follows a
two way handshake over each TCP connection as shown in
Fig. 1(a). Node which is the source of block or transaction
will send inv (inventory) message to its direct neighbors
which respond with getdata requests if they don’t have the
block/transaction being announced; nodes which already have
the block/transaction will not send get request. In this man-
ner, block and transaction propagate through the network in
generations as shown in Fig. 1(b).

We model block and transaction (hereafter referred collec-
tively as data) forwarding through the network using branching
processes [8]. Propagation protocol has the same behavior for
the block that was mined by the particular node or transaction

that has arrived to that node as the ingress of the overlay
network. In the first step, the source node will act as the root
of the spanning tree of the graph and transmit the data over all
its TCP connections. In order to trace phases of the distribution
protocol we will assign index @ = 0.. Dy cpn(z) — 1 to each
phase and therefore we also need the initial connectivity PGF
as Cny(z) = Cn(z).

First hop neighbors will receive the data and they comprise
the first generation of nodes that has received the data; their
number can be described with the PGF of
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When nodes from first generation start distributing data to their
neighbors we need to address and model following problems
(these problems exist in all later phases):

1) In current generation %, some nodes are interconnected
so they will not transmit data to each other since they
already got it from nodes in generation ¢ — 1.

2) Some nodes in target generation ¢ will have connections
towards the same node in generation ¢+ 1. This decreases
the number of TCP connections through which a node in
generation ¢ + 1 will further distribute the data to nodes
in generation ¢ + 2. This will decrease node population
in generation 7 + 1 as well.

Therefore the total number of TCP connections for a node
in generation i consists of the connections coming from
generation ¢ — 1, described with PGF In;(z); connections
towards other nodes in the same generation 7, described with
PGF Loc;(z); and connections available to transmit data to
nodes in generation ¢ + 1, described with PGF O;(z). For
each node in the first generation, receiving data from the root
these PGFs are
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PGF for the number of connections coming from a first
generation node and available to send data towards second
generation nodes is
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Some of the connections going from nodes in first to nodes
in second generation may end at the same node which will



reduce the size of the second generation; the corresponding
PGF which models this overlap is
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The PGF for the number of TCP connections leaving a

node in the first generation and generating one member in
the second generation is
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which leads to the PGF for the population of the second
generation being expressed as

Hy(z) = Cna(Hi(2)) @)

After this Cny(z) and Hs(z) are used to compute node
connectivity and population for the third phase and so on.
This process is continued for a total number of Dy, cpn(z) —1
phases. In each phase mean node population in generation

i,i=0..Dncn) — 1 is calculated as H; = HJ(1) and

probability that a given node is reached in i-th generation is
H;

Pty = — 8
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Mean number of nodes reached in the last generation and
probability that data will not be forwarded can be then
computed as
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III. DATA RATES IN THE BITCOIN NETWORK

Model from section II describes the network distribution
of one data item. However there are many mining nodes (if
not all) in the network which can inject mined blocks for
distribution and verification, and virtually all nodes can inject
new transactions. Therefore traffic offered to any network node
consists of fresh traffic coming for further distribution and
traffic which is in the process of distribution over the network.
For the new block traffic we will assume that each node can be
a miner, and we will use the standard assumption that the time
to complete PoW for a new block is exponentially distributed,
i.e., that blocks arrive to network according to homogeneous
Poisson process [4], [3], [7], [19].

When a node begins to distribute a newly mined block,
other nodes which are in the process of mining the same
block will cancel mining process upon hearing the new block.
If distribution time of the block is close to zero and nodes
have same computational power then Poisson arrival rate of
new mined blocks in the network with N miners would be
Ay = 600 500 - However, due to finite block distribution time,
it is possible that other block is mined at more than one
node in the network and distributed as well, even though

previous block has not completed the distribution. This will
result in the forking event where different blocks are mounted
as blockchain heads in different areas of the network. As a
consequence, the mined block Poisson arrival rate per node is

L
600N

assuming same computational power of nodes. The factor
Prori Ay originates from the race situation when two nodes
complete mining the block in the time window shorter than
transaction distribution time; it will be computed in Sec-
tion V-A.

We also assume that new transactions arrive to each node
with rate of A;. In order to model the traffic through the
network we need to use PGFs for the node connectivity in
each phase. At each node of the network, PGFs for the fresh
traffic for blocks and transactions, respectively, entering the
network are Ay o(2) = 2% and A\ o(2) = 2.

For the initial phase ¢ = 0, input and output rates for block
traffic are the same, i.e.,

bo(2) = X (2) =2, Nle) =

For each further phase i, ¢ = 1.. Dy cn(z) — 1, since TCP
connections are bidirectional, PGFs for the input and output,
block and transaction traffic are
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Since each node distributes data in all phases, total traffic
offered to each node has following PGFs for blocks

Dn,cn()—1

II

j=0
DN ,cn(z)—1

II

Jj=0

A'tor(2) = AP (2) (12)

Ator(2) = A7y (2)

Therefore, offered traffic and output to each node are
random variables due to the combination of distribution of
blocks and transactions in different phases and due to the
random connectivity of each node towards the rest of the
network. and we can get first two central moments as
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Values for the transaction traffic have analogous form.



Due to the complexity of expressions (12), we model them
as Gamma probability distributions with densities:
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where values by ; and ¢y, are defined as
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and values for transaction arrival rates by and cy: have
analogous form.

IV. QUEUING MODEL OF THE DISTRIBUTION NETWORK

So far we have seen that each node receives blocks and
transactions in different distribution phases over its TCP
connections. It will request and receive only the data which it
does not currently have. Moreover node needs to prioritize
block traffic over transaction traffic in order to minimize
the probability of forking. Note that blocks and transactions
join different pools for verification. This framework can be
modeled using Jackson network approach [13] applied to non-
preemptive priority queues as discussed in [9], [10]. Each node
receives mined blocks and new transactions, and processes
them using two queues organized in priority order of blocks
over transactions. Each node also can eliminate a block or a
transaction if there is no need for further forwarding. Since
data which will not be forwarded does not join forwarding
queues, the input rate for one node consists of output rates (of
all protocol phases) of all nodes connected to it.

Time to process and forward single block consists of block
verification time, time to exchange inv and getdata messages
which is comprised of two mean round trip times (RTTs), and
time to transmit the block. Block verification time BV is of the
order of ms, while mean RTT takes tens to perhaps two hun-
dred ms. Transmission time of the block over TCP connection
is roughly given as B/R where B denotes mean block size in
bits and R denotes mean throughput of TCP connection (for
simplicity, we ignore segment headers). Transmission time has
order of magnitude expressed in seconds.

Given different sizes and distributions of verification time,
RTT and block transmission time we have assumed that
block service time is exponentially distributed with service
rate derived from the sum of component means p, =
m, pdf by(z) = ppe~™"+* and Laplace Stieltjes
Transform (LST) B;(s) = p/(s + pp). Note that in our
further derivation we will use M/G/1 framework so any other
distribution of service time can be used. As the transaction
verification and transmission times are much smaller, the main
component of the transaction service time are two RTTs.
We assume that transaction service time is exponentially
distributed with rate pu; = pdf by (z) = pre™*“* and
LST B (s) = pue/ (s + pu).

For non-preemptive priority M/G/1 analysis of block and
transaction queues [20] we need probability distributions of the
number of block arrivals during block service time (with PGF

1
2RTT”>

Ap(z)) and number of block arrivals during transaction service
time, with PGF Ay (z). Specific challenge in this model is that
arrival rates of non-homogeneous Poisson processes for blocks
and transactions )\g%ot and )\g%t are random and framework
from [20] had to be modified. Using the individual arrival

probabilities for block and transaction service times
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we can calculate the corresponding PGFs as
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Computational complexity of computing the Taylor series
expansion is high but 6-20 series members provide sufficient
accuracy of the PGF (i.e., we have been computing mass
probabilities until they are larger than 10~°). For block traffic
(which has higher priority), the PGF for the number of blocks
left in the queue after the block departure and LST for the
block response time are, respectively,
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where index k denotes the order of the moment.

V. BLOCK DISTRIBUTION TIME

Using the probabilities of phases in data distribution pro-
tocol calculated in Section II, we can calculate the LST of
duration of total block/transaction distribution as

D n(z 1 * 7
() = S T ()Y
b 1 — Pnt

and from those LSTs all necessary moments of distribution
time can be found. Due to complexity of expressions (20), it
is difficult to get probability density functions using inverse
transformations. Instead we have estimated data distribution
time using Gamma probability distribution with probability
density as function of
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where by, , = var(Z,) /=, and ¢, p = Zp /by b



A. Forking Probability

Probability of forking for two blocks equals the probability
that block interarrival time is smaller than block distribution
time. To model this we need to isolate the node which has
mined a block, say, A and the rest of the network where
each node can be a miner of another block B with equal
probability. If pdf of block interarrival time for the rest of the
network containing N7 nodes is given with g, (y) then forking
probability becomes

00 z
Pfork = / (/ b
=0 y=0

If the block interarrival time from N — 1 nodes in the
network is exponentially distributed with parameter (N —1) A,
expression (22) becomes

Pfork = / (1 - e_(N_l)Abr))'
=0

1 Cn,b, Cpnp—1,_—2/bpp

o) x e %/ ooy
Unfortunately, Py, from the last expression participates in
block arrival rate defined in (10). This results in a system of
equations which need to be solved iteratively starting from
low tentative values, e.g., P})Wk = 0.001, until the difference
between values computed in successive iterations becomes
smaller than the predefined threshold.

Using the probabilities of reaching the i-th generation and
populations of nodes reached in particular distribution phases
it is possible to calculate sizes of network partitions with
different heads of the chain.

(y)dy> frp(x)dx (22)

(23)

VI. PERFORMANCE EVALUATION

Our evaluation was conducted for network sizes in the range
N = 2000 ..4000 in steps of 250. For each network size, a
random symmetric NV - N matrix was generated. Number of
connections per row followed random probability distribution
Cn(z) =Y imer  pez* with mean value of Cn = Cn/(1) =
8 while minimum and maximum numbers were Cpmin, = 5
and ¢4, = 13 respectively. For eight values of network size,
network had the diameter of 6. Larger values of diameter (e.g.,
7 and 8) were possible due to randomness of connectivity,
but for reasons of calibration we have chosen outcomes with
diameter equal to 6 since a larger diameter for some outlier
cases would have produced larger delays and affect parameters
like forking probability.

A. Performance of block distribution algorithm

Probability distributions of node connectivity are shown in
Fig. 2. They are close to each other since all network graphs
were generated using the same algorithm. Fig. 3(a) shows
mean number of hops needed to distribute block/transaction
when network size increases from 2000 to 4000 under same
diameter and similar connectivity. We observe that mean
number of hops drops due to higher number of links available
to carry data. However, when the number of nodes increases
over 4000 with same connectivity distribution, diameter will
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Fig. 2. Distribution of number of connections per node

inevitably increase and mean number of hops will experience
an increase as well. When network size increases (under
same diameter and connectivity distribution), more nodes are
reached in the last phase. This is further confirmed in Figs. 3(b)
and 3(c) which show mean number of nodes reached in each
phase and probability that node is reached in phase : =0..6
respectively. Each figure has 8 curves which correspond to
one value of network size in the range N = 2000 .. 4000.
In Fig. 3(b) lowest curve shows case when N = 2000 and
highest curve shows the case when N = 4000 (curves between
them are monotonically ordered). All curves show exponential
increase of mean populations in each generation until fourth
phase. After that gradient towards fifth generation becomes
negative for smaller network sizes N = 2000 .. 2500 or
slows down for N = 2750..4000. Consequently, probabilities
of belonging to i-th generation (Fig. 3(c)) are obtained by
dividing mean generation size with network size. In this case
probability of belonging to the fourth generation is highest
when N = 2000 and lowest when N = 4000. Probability of
being in fifth and sixth generation declines for N = 2000,
while for N = 2250 .. 2750 the decline starts after fifth
generation. For network sizes N = 3000 .. 4000 there is no
decline but the gradient of increase slows down.

B. Queuing performance

In our experiment we assumed that mean RTT is 100ms,
mean connection throughput is R = 2Mbps, and mean block
size is B = 400KB, which result in mean block transmission
time of 1.6s. This gives 1, = 0.55 and i, = 5.

Results from queuing analysis for block traffic are shown
in Figs. 4 and 5. Fig. 4(a) shows mean value while Fig. 4(b)
shows coefficients of variation (circles), skewness (diamonds)
and kurtosis (boxes) for node response time for blocks. Ac-
cording to the values of higher moments node response time
is almost exponential (exponential distribution has coefficients
of variation, skewness and kurtosis equal to 1, 2, and 9 respec-
tively). This is reasonable since block traffic is priority traffic,
its rate is low and service time is exponentially distributed.

Mean network distribution time for blocks is shown in
Fig. 5(a), while Fig. 5(b) shows its coefficients of variation
(circles), skewness (diamonds) and kurtosis (boxes). Mean
delivery time shows slight decline from 10.6s to 9.8s when
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network size grows from 2000 to 4000 as a consequence
of richer connectivity. At the same time higher moments in
Fig. 5(b) show behavior of generalized Erlang-k distribution
with the number of stages approximately equal to the mean
number of hops during distribution. This is expected since
expression (20) indicates that network distribution time is a
linear combination of partial path times and node response
time has distribution close to exponential. This result is
different from the observation that block propagation time
follows exponential distribution [3], [19].

Forking probability in Fig. 5(c) exhibits decrease when
network size is increasing and has the shape close but not
identical to the mean block distribution time. This is due to
the decrease of the block distribution time and also due to the
slight increase of the block B arrival rate with the increase of
network size, as shown in (22).

VII. CONCLUSION

In this work we have developed the analytical model of
data delivery protocol over P2P Bitcoin network. We have
also developed priority based queuing model of Bitcoin nodes
and Jackson network model of the whole network. These
models give probability distributions of node populations in
data distribution phases, response time of nodes, and network
distribution times for blocks and transaction. Our results show
strong qualitative and quantitative dependency of network
performance on distribution of node connectivity and network
size. Intensity of transaction traffic cannot affect performance
of block traffic much since it has low priority. We demonstrate
use of the integrated model on the calculation of forking
probability. This model can be also used for modeling of other
attacks in the network which will be the subject of our future
work.
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