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Abstract—Accurate performance evaluation of cloud computing resources is a necessary prerequisite for ensuring that quality
of service (QoS) parameters remain within agreed limits. In this paper, we employ both the analytical and simulation modeling
to addresses the complexity of cloud computing systems. Analytical model is comprised of distinct functional sub-models, the
results of which are combined in an iterative manner to obtain the solution with required accuracy. Our models incorporate the
important features of cloud centers such as batch arrival of user requests, resource virtualization and realistic servicing steps,
to obtain important performance metrics such as task blocking probability and total waiting time incurred on user requests. Also,
our results reveal important insights for capacity planning in order to control delay of servicing users requests.
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model, fixed-point iteration.
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1 INTRODUCTION
Cloud Computing is a computing paradigm in which
different computing resources such as infrastructure,
platforms and software applications are made accessi-
ble over the Internet to remote user as services [1].
Infrastructure-as-a-Service (IaaS) cloud providers, such
as Amazon EC2 [2], IBM Cloud [3], GoGrid [4],
NephoScale [5], Rackspace [6] and others, deliver,
on-demand, operating system (OS) instances provisioning
computational resources in the form of virtual machines
deployed in the cloud provider data center. A cloud service
differs from traditional hosting in three principal aspects.
First, it is provided on demand; second, it is elastic since
users that use the service have as much or as little as they
want at any given time (typically by the minute or the hour);
and third, the service is fully managed by the provider
[7], [8]. Due to dynamic nature of cloud environments,
diversity of user requests, and time dependency of load,
providing agreed quality of service (QoS) while avoiding
over-provisioning is a difficult task [9].

Service availability and response time are two impor-
tant quality measures in cloud’s users prospective [10].
Quantifying and characterizing such performance measures
requires appropriate modeling; the model ought to cover
vast parameter space while it is still tractable. A monolithic
model may suffer from intractability and poor scalabil-
ity due to large number of parameters [11]. Instead, in
this paper we develop and evaluate tractable functional
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sub-models and their interaction model while iteratively
solve them. We construct separate sub-models for different
servicing steps in a complex cloud center and the overall
solution obtain by iteration over individual sub-model
solutions [12]. We assume that the cloud center consists of
a number of Physical Machines (PM) that are allocated to
users in the order of task arrivals. More specifically, user
requests may share a PM using virtualization technique.
Since many of the large cloud centers employ virtualization
to provide the required resources such as PMs [13], we
consider PMs with a high degree of virtualization. Real
cloud providers offer complex requests for their users. For
instance, in Amazon EC2, the user is allowed to run up
to 20 On-Demand or Reserved Instances, and up to 100
Spot Instances per region [2]. Such complex requests are
referred to as super-tasks. Our proposed model embraces
realistic aspects and provides deep insight into performance
analysis of today’s cloud centers. The main features of our
analytical model can be listed as follows:

• Assumes Poisson arrival of user requests;
• Incorporates complex user requests by introducing

super-tasks;
• Supports high degree of virtualization;
• Captures different delays imposed by cloud centers on

user requests;
• Characterizes the service availability at cloud center;
• Provides information for capacity planning;
• Offers tractability and scalability;

The rest of the paper is organized as follows. In Section
2, we survey related work in cloud center performance
analysis. Section 3 presents our model and the details of
the analysis. Section 4 introduce the stochastic sub-models
and their interactions. Section 5 presents the numerical
results obtained from the analytical model. Finally, section



IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. X, NO. Y, 201Z 2

6 summarizes our findings and concludes the paper.

2 RELATED WORK

Cloud computing has attracted considerable research atten-
tion, but only a small portion of the work done so far
has addressed performance issues by rigorous analytical
models. Many research works carried out a measurement-
based performance evaluation of the Amazon EC2 [2], IBM
Blue Cloud [3] or other cloud providers in the context of
scientific computing [14], [15], [16], [17], [18], [19], [20],
[21]. Here we survey those that proposed a general analyt-
ical model for performance evaluation of cloud centers.

In [22], the authors studied the response time in terms
of various metrics, such as the overhead of acquiring
and realizing the virtual computing resources, and other
virtualization and network communication overhead. To
address these issues, they have designed and implemented
C-Meter, a portable, extensible, and easy-to-use framework
for generating and submitting test workloads to computing
clouds. In [23], a cloud center is modeled as the classic
open network with single arrival, from which the distri-
bution of response time is obtained, assuming that both
inter-arrival and service times are exponential. Using the
distribution of response time, the relationship among the
maximal number of tasks, the minimal service resources
and the highest level of services was found.

In [24], the cloud center was modeled as an
M/M/m/m + r queuing system from which the distri-
bution of response time was determined. The response
time was broken down into waiting, service, and execution
periods, assuming that all three periods are independent
(which is unrealistic, according to authors’ own argument).
Our earlier work [25], [10], [26] presents monolithic an-
alytical models which are much more restrictive than our
current work in terms of extendability simplicity and cost
of solution. Also, that work does not address the concept
of virtualization as well as heterogeneous server pools and
PMs.

The performance of cloud computing services for sci-
entific computing workloads was examined in [14]. The
authors quantified the presence of Many-Task Computing
(MTC) users in real scientific computing workloads. Then,
they performed an empirical evaluation of the performance
of four commercial cloud computing services including
Amazon EC2.

In [27], the authors quantified the resiliency of IaaS
cloud with respect to changes in demand and available
capacity. Using a stochastic reward net based model for
provisioning and servicing requests in a IaaS cloud, they
quantified the resiliency of IaaS cloud with respect to
two key performance measures, namely, task rejection rate
and total response delay. In this work, only, the effect
of abrupt changes in arrival process and system capacity
(i.e., physical machines) have been studied on mentioned
performance metrics.

A hierarchical modeling approach for evaluating qual-
ity of experience in a cloud computing environment was

proposed in [28]. Due to simplified assumptions, authors
applied classical Erlang loss model and M/M/m/K queu-
ing system for outbound bandwidth and response time
modeling respectively. Moreover, since services usually
share the bandwidth, it seems that a processor sharing
approach is more appropriate model than loss model to be
used in the bandwidth model.

In [12], the authors proposed a general analytic model
based approach for an end-to-end performance analysis of
a cloud service. They illustrated their approach using IaaS
cloud, where service availability and provisioning response
delays are two key QoS metrics. The proposed approach
reduces the complexity of performance analysis of cloud
centers by dividing the overall model into sub-models
and then obtaining the overall solution by iteration over
individual sub-model solutions. The model is limited to
single request arrivals, which is not quite realistic; cloud
users may ask for multiple PMs or VMs by submitting in
a single request. In addition, the effect of virtualization has
not been reflected explicitly in their results.

As a result, the lack of scalable and tractable model that
embraces important features of computing cloud centers
such as batch arrival of requests, virtualization and complex
servicing steps motivated us to develop a comprehensive
performance model that meets above mentioned aspects.

3 ANALYTICAL MODEL
In IaaS cloud, when a request is processed, a pre-built
or customized disk image is used to create one or more
VM instances [27]. In this work we assume that pre-built
images fulfill all user requests. We assume that Physical
Machines (PMs) are categorized into three server pools:
hot (i.e., with running VMs), warm (i.e., turned on but
without running VM) and cold (i.e., turned off) [12].
Such categorization reduces operational costs and offers the
capability for disaster recovery [2], [29]. Each PM has up to
two instantiation units that configure and deploy VMs on a
PM. Instantiation of a VM from an image and provisioning
it on hot PMs has the minimum delay compared to warm
and cold PMs. Warm PMs require more time to be ready
for provisioning and cold PMs require additional time to
be started up before a VM instantiation. In this work we
allow users to request more than one VM by submitting a
super-task [26]. So, a super-task may contain more than one
task, each of which requires one VM. The size of super-
task is assumed to be geometrically distributed. However,
for practical reason we set a maximum size of super-tasks
(MSS) to conduct the numerical analysis (i.e., truncated
geometric distribution). Therefore the probability of having
a super-task with size i is

pi =


(1− p)i−1p, if i < MSS

(1− p)MSS−1, if i = MSS
(1)

in which p is the probability of success in geometric
distribution.

Due to high interaction among tasks within a super-
task, each super-task will be provisioned on the same PM.
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However, the number of tasks (VMs) requested by a single
super-task cannot exceed the maximum number of VMs
that can run on a single PM. In this manner the inter-
tasks communication overhead among tasks within a given
super-task will be decreased significantly. In this work, we
assume that all PMs and VMs are homogeneous and adopt
total acceptance policy [30]. Under this policy the system
tries to service all tasks within a super-task at the same
time; provided that partial admission of a super-task is not
considered. User requests (super-tasks) are submitted to a
global finite queue and then processed on the first-in, first-
out basis (FIFO).

Resource Assigning Module (RAM) processes the super-
task at the head of global queue as follows: first, it tries to
provision the super-task on a PM machine in the hot pool. If
the process is not successful then RAM tries the warm pool
and finally the cold pool. Ultimately, RAM either assigns
a PM in one of the pools to a super-task or the super-task
gets rejected. As a result, user requests (super-tasks) may
get rejected either due to lack of space in global input queue
or insufficient resource at the cloud center. When a running
task finishes, the capacity used by that VM is released and
becomes available for servicing the next task.

Table 1 describes the symbols and acronyms that we use
in next sections.

TABLE 1
Symbols and corresponding descriptions

Symbol Description

RAM Resource Assigning Module

VMPM Virtual Machine Provisioning Module

RASM Resource Allocation Sub-Model

VMPSM Virtual Machine Provisioning Sub-Model

MSS Maximum Super-task Size

pi Probability of having a super-task with size i

λst Mean arrival rate of super-tasks

Lq Size of global queue

Ph, Pw, Pc Prob. of success in hot, warm and cold pool

Nh, Nw, Nc Number of PMs in hot, warm and cold pool

φh, φw, φc Instantiation rate of VMs in hot, warm or cold pool

λh, λw, λc Arrival rate to a PM in hot, warm and cold pool

αh, αw, αc Look up rate in hot, warm and cold pool

BPq Prob. of blocking due to lack of room in global queue

BPr Prob. of blocking due to lack of capacity

Preject Total probability of blocking (BPq +BPr)

wt Mean waiting time in global queue

lut Mean look-up delay among pools

wtPM Mean waiting time in a PM queue

pt Mean VM provisioning time

td Mean total delay for a task before getting into service

We identify four main delays imposed on user requests
(Fig. 1): queuing delay in the global queue; look-up time
at the RAM; queuing delay at the chosen PM; and VM
provisioning delay. The response time is the sum of the
sum of these delays and the actual service time. In order

to model each module precisely, we design two stochastic
sub-models, captures the details of the RAM and VMPM
modules. We then connect these sub-models into an overall
model to compute the cloud performance metrics: task
rejection probability and mean response delay. Finally, we
solve these sub-models and show how performance metrics
are affected by variations in workload (super-task arrival
rate, super-task size, task mean service time, number of
VMs per PM) and system capacity (i.e., number of PMs
in each pool). We describe our analysis in the following
sections.

4 INTEGRATED STOCHASTIC MODELS

As mentioned in section 2, due to high complexity of
cloud centers, the proposed singular models were hard to
analyze and extend. By introducing interacting analytical
sub models, the complexity of system is divided into sub-
models so that they can be analyzed accurately in order
of processing of task components. Moreover, the sub-
models are scalable enough to capture the flexibility (on-
demand services) of the cloud computing paradigm. In
this paper, we implement the sub-models using interactive
Continuous Time Markov Chain (CTMC). The sub-models
are interactive such that the output of one sub-model is
input to the other ones and vice versa.

4.1 Resource Allocation Sub-Model

The resource allocation process is described in the resource
allocation sub-model (RASM) shown in Fig. 2. RASM is a
two dimensional CTMC in which we take care of number
of super-task in the queue as well as the current pool on
which provisioning is taking place. Since the number of
potential users is high, but each user submits super-tasks
one at a time with low probability, the super-task arrival
can be modeled as a Poisson process [31] with rate λst.
Super-tasks are lined up in the global finite queue to be
processed in a first-in, first-out (FIFO) basis. Each state
of Markov chain is labeled as (i, j), where i indicates the
number of super-tasks in queue and j denotes the pool on
which the leading super-task is under provisioning. State
(0, 0) indicates that system is empty which means there is
no request under provisioning or in the queue. Index j can
be h, w or c that indicate current super-task is undergoing
provisioning on hot, warm or cold pool respectively. The
global queue size is Lq and one more super-task can be
at the deployment unit for provisioning so the total system
capacity is Lq + 1.

Let Ph, Pw and Pc be the success probabilities of finding
a PM that can accept the current super-task in hot, warm
and cold pool respectively. We assume that 1/αh, 1/αw and
1/αc are the mean look-up delays for finding an appropriate
PM in hot, warm and cold pool respectively. Upon arrival of
first super-task, system moves to state (0, h) which means
the super-task will be provisioned immediately in the hot
pool. Afterwards, depending on the upcoming event, three
possible transitions can occur:
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Fig. 1. The steps of servicing and corresponding delays.

(a) Another super-task has arrived and system transits to
state (1, h) with rate λst.

(b) A PM in hot pool accepts the super-task so that system
moves back to state (0, 0) with rate Phαh.

(c) None of PMs in hot pool has enough capacity to accept
the super-task, so the system will examine the warm
pool (i.e., transit to state (0, w)) with rate (1−Ph)αh.

On state (0, w), RASM tries to provision the super-task
on warm pool; if one of the PMs in warm pool can
accommodate the super-task, the system will get back
to (0, 0), otherwise, RASM examines the cold pool (i.e.,
transition from state (0, w) to (0, c)). If none of the PMs
in cold pool can provision the super-task as well, the system
moves back from (0, c) to (0, 0) with rate (1−Pc)αc which
means the user request (super-task) will get rejected due
to insufficient resources in the cloud center. During the
provisioning in cold pool, another super-task may arrive and
takes the system to state (1, c) which means there is one
super-task in deployment unit and one awaiting in global
queue. Finally, the super-task under provisioning decision
leaves the deployment unit, once it receives a decision from
RASM and the next super-task at the head of global queue
will go under provisioning. In this sub-model, arrival rate of
super-task (λst) and look-up delays (1/αh, 1/αw and 1/αc)
are exogenous parameters and success probabilities (Ph,
Pw and Pc) are calculated from the VM provisioning sub-
model. The VM provisioning sub-model will be discussed
in the next section.

Using steady-state probabilities π(i,j), some performance
metrics such as blocking probability and probability of
immediate service can be calculated. Two types of blocking
may happen to a given super-task:

(a) Blocking due to a full global queue occurs with the
probability of

BPq = π(Lq,h) + π(Lq,w) + π(Lq,c) (2)

(b) Blocking due to insufficient resources (PMs) at pools

0,0

λst

Lq,h1,h0,h
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Lq,w1,w0,w

λst λst
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Fig. 2. Resource allocation sub-model

[32], with the probability of

BPr =

Lq∑
i=0

αc(1− Pc)
αc + λst

π(i,c) (3)

The probability of reject (Preject) is, then, Preject =
BPq +BPr. In order to calculate the mean waiting time in
queue, we first establish the probability generating function
(PGF) for the number of super-tasks in the queue [33],

Q(z) = π(0,0) +

Lq∑
i=0

(π(i,h) + π(i,w) + π(i,c))z
i (4)

The mean number of super-tasks in queue (q) is the first
derivative of Q(z) at z = 1 [30],

q = Q′(1) (5)

Applying Little’s law [34], the mean waiting time in queue
(wt) is given by:

wt =
q

λst(1− Preject)
(6)

Look-up time among pools can be considered as a Coxian
distribution with 3 steps (Fig. 3). So it can be calculated
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as [34], [35],

lut =
1/αh + (1− Ph)((1/αw) + (1− Pw)(1/αc))

1−BPq
(7)

h cw

Ph

1-Ph

Pw

1-Pw

1

in

out

Fig. 3. Three steps of look-up delays among pools.

4.2 VM Provisioning Sub-Model
Virtual Machine Provisioning Sub-Model (VMPSM) cap-
tures the instantiation, deployment and provisioning of
VMs on a PM. VMPSM also incorporate the actual ser-
vicing of each task (VM) on a PM. Note that each task
within super-task is provisioned with an individual VM.
However RASM makes sure that all tasks within a super-
task get provisioned at the same PM. In this model, we
assume homogeneous PMs, VMs and tasks. As can be
seen from Fig. 3, the look-up time for finding a proper
PM among pools has Coxian distribution and the look-up
time is a weighted sum of an exponentially distributed
random variable with the probability of Ph, a 2-stage
Erlang distributed random variable with the probability
of (1− Ph)Pw, and a 3-stage Erlang distributed random
variable with the probability of (1− Ph)(1− Pw)Pc.
Hence, the Laplace-Stieltjes Transform (LST) of look-up
time can be calculated as:

B∗(s) = Ph(
αh

s+ αh
) + Pw(1− Ph)(

αh
s+ αh

)(
αw

s+ αw
)

+ (1− Ph)(1− Pw)(
αh

s+ αh
)(

αw
s+ αw

)(
αc

s+ αc
)

(8)
which allows us to calculate the mean, standard deviation
and coefficient of variation (CoV) of the look-up time at
the PM pools. As RASM is not an M/M/1 queuing system,
the output process (which is also the arrival process to the
PMs) is not Poisson [36] so, strictly speaking, the VMPSM
cannot be modeled with a CTMC [34]. However, if the CoV
of the arrival process to the PMs is not significantly lower
than 1, we can approximate it with a Poisson process. This
assumption, which will be justified in Section 5, allows us
to model the process with sufficient accuracy.

Fig. 4 shows the VMPSM (an approximated CTMC) for
a PM in hot pool. A PM in warm or cold pool can be
modeled with the same VMPSM, though, with different
arrival and instantiation rate. Consequently, each pool (hot,
warm and cold) can be modeled as a set of VMPSM with
the same arrival and instantiation rate. Each state in Fig.
4 is labeled by (i, j, k) in which i indicates the number
of tasks in PM’s queue, j denotes the number of task that
is under provisioning and k is the number of VM that are
already deployed on the PM. Note that we set the queue

size at each PM equal to the maximum number of VMs
that can be deployed on a PM. Let φh be the rate at which
a VM can be deployed on a PM at hot pool and µ be the
service rate of each VM. So, the total service rate for each
PM is the product of number of running VMs by µ. State
(0, 0, 0) indicates that the PM is empty and there is no task
either in the queue or in the instantiation unit. Depending
on the size of arriving super-task, model transits to one of
the states in {(0, 1, 0), (1, 1, 0), · · · ,(MSS − 1, 1, 0)}, in
which MSS is the maximum possible size of super-tasks.
Since all tasks within a super-task are to be provisioned at
the same PM, the maximum number of VMs on a PM must
be at least equal to MSS. The arrival rate to each PM in
the hot pool is given by:

λh =
λst(1−BPq)

Nh
(9)

in which Nh is the number of PMs in the hot pool. Note
that BPq , used in (2), is obtained from RASM. In Fig.
4, {λi, i = 1..MSS} is given by λi = λhpi; here pi is the
probability of having a super-task of size i. In this work, the
size of super-task can be generally distributed, but we use
truncated geometric distribution for numerical experiment.
The state transition in VMPSM can occur due to super-
task arrival, task instantiation or service completion. From
state (0, 0, 0), system can move to state (1, 1, 0) with rate
λ2 (i.e., super-task with size 2). From (1, 1, 0), system
can transit to (0, 1, 1) with rate φh (i.e., instantiation rate)
or upon arriving a super-task with size k, moves to state
(k + 1, 1, 0). From (0, 1, 1), system can move to (0, 0, 2)
with rate φh, transits to (0, 1, 0) with rate µ (i.e., service
completion rate), or again upon arriving a super-task with
size k, system can move to state (k, 1, 1) with rate λk.
A PM can not accept a super-task, if there is no enough
room to accommodate all tasks within super-task. Suppose
that πh(i,j,k) is the steady-state probability for the hot PM
model (Fig. 4) to be in the state (i, j, k). Using steady-state
probabilities, we can obtain the probability that at least one
PM in hot pool can accept the super-task for provisioning.
First we need to compute the probability that a hot PM
cannot admit a super-task for provisioning (Phna). Let m be
the maximum possible number of VMs in a PM and Fh be
the free capacity at each state:

Fh(i, j, k) = m− (i+ j + k)

Phna is then given by:

Phna =
∑
x∈ξ

MSS∑
t=Fh+1

πhxpt (10)

where pt is the probability of having a super-task of size
t and ξ is a subset of VMPSM states with the following
definition:

ξ = {(i, j, k)| Fh(i, j, k) < MSS}

Therefore, probability of success provisioning (Ph) in the
hot pool can be obtained as

Ph = 1− (Phna)
Nh (11)
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Fig. 4. Virtual machine provisioning sub-model for a PM in the hot pool.

Note that Ph is used as an input parameter in the resource
allocation sub-model (Fig. 2). The provisioning model for
warm PM is the same with the one for hot PM, though,
there are some differences in parameters:
(a) The arrival rate to each PM in warm pool is

λw =
λst(1−BPq)(1− Ph)

Nw
(12)

where Nw is the number of PMs in warm pool.
(b) Every PM in warm pool requires extra time to be ready

(hot) for first instantiation. This time is assumed to be
exponentially distributed with mean value of γw.

Instantiation rate in warm pool is the same as in hot pool
(φh). Like VMPSM for a hot PM (Fig. 4), the model for
a warm PM is solved and the steady-states probabilities
(πw(i,j,k)), are obtained. The success probability for provi-
sioning a super-task in warm pool is:

Pw = 1− (Pwna)
Nw (13)

A PM in the cold pool can be modeled as in the warm and
hot pool but with different arrival rate and start up time.
The effective arrival rate at each PM in the cold pool is
given by:

λc =
λst(1−BPq)(1− Ph)(1− Pw)

Nc
(14)

in which Nc is the number of PMs in the cold pool. A
cold PM (off machine), requires longer time than a warm
PM to be ready (hot) for the first instantiation. We assume
that the start up time is also exponentially distributed with
mean value of γc. The success probability for provisioning
a super-task in the cold pool is given by:

Pc = 1− (P cna)
Nc (15)

From VMPSM, we can also obtain the mean waiting time
at PM queue (wtPM ) and mean provisioning time (pt) by

using the same approach as the one that led to Eq. (6). As a
result, the total delay before starting of actual service time,
is given by:

td = wt+ lut+ wtPM + pt (16)

Note that all success probabilities (i.e., Ph, Pw and Pc) are
dependent on the arrangement (i.e., number of hot, warm
and cold PMs) of pools.

4.3 Interaction among sub-models
The interactions among sub-models is depicted in Fig.
5. VM provisioning sub-models (VMPSM) compute the
steady state probabilities (Ph, Pw and Pc) that at least one
PM in a pool (hot, warm and cold, respectively) can accept
a super-task for provisioning. These probabilities are used
as input parameters to the resource allocation sub-model
(RASM). Hot PM sub-model (VMPSM hot) computes Ph
which is the input parameter for both warm and cold
sub-models and warm PM sub-model (VMPSM warm)
computes Pw which is the input parameter for the cold sub-
model (VMPSM cold). The resource allocation sub-model
compute the blocking probability, BPq , which is the input
parameter to VM provisioning sub-models. As can be seen,
there is an inter-dependency among sub-models. This cyclic
dependency is resolved via fixed-point iterative method
[37] using a modified version of successive substitution
approach (Algorithm 1).

5 NUMERICAL VALIDATION

The resulting sub-models have been implemented and
solved using Maple 15 from Maplesoft, Inc. [38]. The
successive substitution method (Algorithm 1) is continued
until the difference between the previous and current value
of blocking probability in global queue (i.e., BPq) is less
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VMPSM_hot

VMPSM_cold

RASM

Ph Ph
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PhBPq
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BPq BPq

Fig. 5. Interaction diagram among sub-models.

than 10−6. Usually the integrated model converges to the
solution in less than 15 iterations. To validate the analytical
solution, we have also built a discrete event simulator of
the cloud center using the Artifex engine [39].

Algorithm 1 Successive Substitution Method
Input: Initial success probabilities in pools: Ph0, Pw0, Pc0
Output: Blocking probability in Global Queue: BPq

counter ← 0; max ← 30; diff ← 1
BPq0 ← RASM (Ph0, Pw0, Pc0)
while diff ≥ 10−6 do

counter ← counter + 1
Ph1 ← VMPSM hot (BPq0)
Pw1 ← VMPSM warm (BPq0,Ph1)
Pc1 ← VMPSM cold (BPq0,Ph1,Pw1)
BPq1 ← RASM (Ph1, Pw1, Pc1)
Ph0 ← Ph1; Pw0 ← Pw1; Pc0 ← Pc1
diff ← |(BPq1 −BPq0) |
BPq0 ← BPq1
if counter = max then

break
end if

end while
if counter = max then

return -1
else

return BPq0
end if

Under different configurations and parameter settings,
we obtain two important performance metrics, namely,
rejection probability of super-tasks (STs) and total response
delay. Mean service time of each task within STs ranges
form 20 to 140 minutes. However, it should be noted that,
beyond a certain degree of virtualization (i.e., number of
deployed VMs), the actual service times will increase due
to the overhead required to run several VMs concurrently.
To model this effect, we have used publicly available
data about server performance [40]. The continuous line
in Fig. 6 shows the VMmark performance for a family
of advanced servers under varying degree of virtualization
[41], including both computation and communication time;
from this data, we have extracted the normalized response
time, shown by circles, which has subsequently been used

in our experiments. Mean service time represents both

performance vs. number of VMs
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Fig. 6. VMmark results and normalized mean service
time.

computation and communication time for a task within
super-tasks. Identifying higher moments of service time
requires more data or benchmarks from cloud providers
[42].

Arrival rate ranges from 1 to 7 STs per minute and global
queue size is set to 50 STs. We assume 15 to 20 PMs in each
pool and each PM can run up to 10 VMs simultaneously.
The look-up time for finding a proper PM is assumed to be
independent of the number PMs in the pool and the type
of pool (i.e., hot, warm and cold). Look-up rate is set to
10 searches per minute. Mean preparing delay for a warm
and cold PM to become a hot PM (i.e., be ready for first
VM instantiation) are assumed to be 1 to 3 and 5 to 10
minutes, respectively. Mean time to deploy a VM on a hot
PM is assumed to be between 1 and 10 minutes. First VM
instantiation on a warm and cold PM are to be 5 to 20 and
15 to 30 minutes, respectively. After first VM instantiation
on a warm or cold PM, it has already become a hot PM so
that the next VM can be deployed just like a hot PM. Note
that in all plots, analytical model and simulation results are
shown by lines and symbols respectively.

First, we characterize the look-up time in pools
by presenting the effect of arrival rate on the success
probabilities for two configurations (15 and 17 PMs per
pool). As can be seen in Fig. 7(a), the success probabilities
decrease smoothly by increasing the arrival rate. Also,
it can be noticed that the curves for Ph, Pw and Pc
are equidistant which reveals a linear dependency among
them with respect to offered load and pool capacity. Fig.
7(b) shows that by increasing the arrival rate, the CoV
of look-up time is slightly below one which corresponds
to exponential distribution. More specifically, under high
traffic intensity, super-tasks have a lower chance to get
provisioned in the hot pool so that RAM needs to check
other pools more frequently. Under heavy load, distribution
of look-up time will approach Coxian distribution with CoV
between 0.84 and 0.90 while under low load it is close to
exponential distribution. Overall, these results justify the
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Poisson approximation of the arrival process to the PMs, as
does the degree of match between analytical and simulation
results in Figs. 8, 9 and 10.

(a) Success probabilities on the pools.

(b) CoV of look-up time on the pools.

Fig. 7. Look-up time characteristics.

We also analyze the effects of task service time on
rejection probability and total delay imposed by the cloud
center on STs before getting into service. In the first
experiment, the results of which is shown in Fig. 8, STs
have one task and PMs are permitted to run only one
VM. Fig. 8(a) shows, at a fixed arrival rate (1 STs/min)
and different numbers of PMs in each pool, increasing
mean service time, raising the rejection probability linearly.
Increasing the system capacity (i.e., the number of PMs
in each pool) reduces the rejection probability. Also, it
can be seen that for tasks shorter than 40 min, extending
the capacity of system has negligible effect on rejection
probability, while for tasks of longer duration (i.e., from 40
to 140 min) rejection probability drops almost linearly. The
maximum gain is obtained at 140 minutes. Fig 8(b) shows
that longer service times will result in longer imposed

Transient Regime

Stable Regime

(a) Task Rejection probability.

Maximum Gain

(b) Total delay for a super-task.

Fig. 8. Single VM deployed on each PM.

delays on STs. It can be seen that for any capacity, there is
a turning point beyond which total delay increases sharply.
For instance when the capacity is 45 PMs (i.e., 15 PMs
in each pool), the turning point is 20 minutes while for
a capacity of 60 PMs (i.e., 20 PMs in each pool), the
turning point is 40 minutes. Cloud providers should operate
in the stable regime (i.e., before turning points). They can
be alerted by such turning points to add more resources
and avoid entering transient regime. In addition, it can be
observed that for the given configuration, adding five PMs
to each pool (i.e., comparing 15 PMs with 20 PMs at 60
min) can reduce the delay by up to a half.

We also calculate the two performance metrics under
different arrival rates while fixing the average service
time at 80 minutes (Fig. 9). One turning point can be
noticed in rejection probability curves (Fig. 9(a)) at which
rejection trend increases suddenly. Such points (e.g., Fig.
9(a), 4 STs/min for 20 PMs in each pool) may suggest the
appropriate time to upgrade or inject more resources (i.e.,
PMs) so that prevent of an undesired rejection rate. In case
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Stable Regime

Transient Regime

(a) Task Rejection probability.

Stable Regime

Transient Regime

Unstable Regime

(b) Total delay for a super-task.

Fig. 9. Single VM on each PM.

of total delay, two turning points can be identified (Fig.
9(b)): after the first one , total delay grows sharply while
at the second point increasing the arrival rate almost has
no effect (i.e., unstable regime). The transient regime, the
range between two turning points, is attributed to the size
of global queue. The longer the global queue is, the larger
the transient range is going to be which is expected.

In the last experiment, we examine the effect of super-
task size on task rejection probability and total delay. Each
PM can run up to ten VMs simultaneously and a super-
task may request up to all of the available VMs in a PM.
Note that the aggregate arrival rate is set to 6 tasks/hr,
however the effective arrival rate of super-tasks is various
for different super-task size. For instance, if the average
super-task size was 3, then the effective arrival rate of super-
tasks would be 2 STs/hr. As can be seen by increasing the
size of super-tasks the rejection probability and total delay
reduce sharply. The bigger super-task size will result in
the lower number of arrivals as well as lower deviation
of super-task size. In other words, in case of large super-

(a) Task Rejection probability.

Maximum Gain

(b) Total delay for a super-task.

Fig. 10. Ten VMs are allowed on each PM.

tasks, they are more likely to be almost in the same size
which improves the utilization of the cloud center. Notice
that, in this work we adopted total acceptance policy for
super-task servicing. Maximum gain is occurred at arrival
rate of 4 STs/min for different pool arrangements. Also, it
can be seen that the results from analytical model and the
simulation are in a good agreement.

6 CONCLUSIONS

In this paper we presented a performance model suitable for
analyzing the service quality of large sized IaaS clouds, us-
ing interacting stochastic models. We examined the effects
of various parameters including ST arrival rate, task service
time, the virtualization degree, and ST size on task rejection
probability and total response delay. The stable, transient
and unstable regimes of operation for given configurations
have been identified so that capacity planning is going to
be a less challenging task for cloud providers. Validation of
analytical results through extensive simulation has shown
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that our analytical model is sufficiently detailed to capture
all realistic aspects of resource allocation process, instance
creation and instantiation delays of a modern cloud center,
while maintaining a good tradeoff between accuracy and
tractability. Consequently, cloud providers can obtain a re-
liable estimation of response time and blocking probability
that will result in avoidance of SLA violation.

REFERENCES

[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A
break in the clouds: towards a cloud definition,” ACM SIGCOMM
Computer Communication Review, vol. 39, no. 1, 2009.

[2] An amazon.com company, “Amazon Elastic Compute Cloud, Ama-
zon EC2,” Website, 2012, http://aws.amazon.com/ec2.

[3] IBM, “IBM Cloud Computing,” Website, 2012, http://www.ibm.com/
ibm/cloud/.

[4] GOGRID, “GoGrid Cloud,” Website, July 2012, http://www.gogrid.
com.

[5] NephoScale, “The NephoScale Cloud Servers,” Website, July 2012,
http://www.nephoscale.com/nephoscale-cloud-servers.

[6] Rackspace, “The Rackspace Cloud,” Website, July 2012, http://www.
rackspace.com/cloud/.

[7] M. Martinello, M. Kaniche, and K. Kanoun, “Web service
availability–impact of error recovery and traffic model,” Reliability
Engineering System Safety, vol. 89, no. 1, p. 616, 2005.

[8] N. Sato and K. S. Trivedi, “Stochastic modeling of composite web
services for closed-form analysis of their performance and reliability
bottlenecks,” Service Oriented Computing ICSOC 2007, pp. 107–
118, 2007.

[9] S. Ferretti, V. Ghini, F. Panzieri, M. Pellegrini, and E. Turrini, “QoS-
aware clouds,” in 2010 IEEE 3rd International Conference on Cloud
Computing (CLOUD), Jul. 2010, pp. 321–328.
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