Modeling the Performance of Heterogeneous IaaS
Cloud Centers

Hamzeh Khazaei
Computer Science Department
University of Manitoba, Winnipeg, Canada
Email: hamzehk @cs.umanitoba.ca

Abstract—Performance modeling of cloud computing centers
is a challenging task due to complexity, shared resources and
large scale of such systems. Introducing heterogeneous resources
and workloads make the analysis even more complicated. In
this paper, we propose a layered stochastic performance model
applicable to cloud centers with wide range of heterogeneous
physical and virtual resources as well as task characteristics
without sacrificing the scalability, granularity and simplicity.
Under various parameters and configurations, key performance
metrics such as task blocking probability and total delay incurred
on user tasks are obtained. The results also reveal practical
insights into capacity planning for cloud computing centers.

I. INTRODUCTION AND RELATED WORK

Service availability and response time are two important
quality measures in cloud’s users perspective [1]. Quantify-
ing and characterizing such performance measures requires
appropriate modeling; the model ought to include a large
number of parameters while still being tractable. A monolithic
model may suffer from intractability and poor scalability due
to vast parameter space [2]. Instead, in this paper we construct
separate sub-models for different servicing steps in a complex
cloud center. We assume that the cloud center consists of
different types of Physical Machines (PM) that are allocated
to users in the order of task arrivals. User requests may
share a PM using virtualization technique. Cloud users may
request more than one virtual machine (VM) by submitting a
single request; such requests are referred as super-tasks in this
context.

Cloud computing has attracted considerable research atten-
tion, but only a small portion of the work done so far has
addressed performance issues by rigorous analytical models
[3]. In [4], authors applied classical Erlang loss formula and
M /M /m/K queuing system for response time and outbound
bandwidth modeling respectively. A general analytical model
for an end-to-end performance analysis of a cloud service is
proposed in [2]. However the proposed model is limited to sin-
gle task arrival per request and also the effect of virtualization
has not been explicitly addressed in performance results. In
[5], the authors studied the response time in terms of various
metrics, such as the overhead of acquiring and realizing
the virtual computing resources, and other virtualization and
network communication overhead.

Our previous work [1], [6] presents monolithic analytical
models which are quite restrictive compared to this work

Jelena Misi¢, Vojislav B. MiSi¢ and Nasim Beigi Mohammadi

Computer Science Department
Ryerson University, Toronto, Canada

Emails: {jmisic,vmisic,nbeigimo} @scs.ryerson.ca

in terms of extendability, simplicity and computational cost.
Also, [1], [6] do not address the concept of virtualization
as well as heterogeneous server pools and PMs. In [7], we
employed a homogeneous integrated performance model to
overcome the complexity of cloud computing centers. In this
work however, we introduce heterogeneity to our performance
model. More specifically, we permit PMs to be different among
pools and also VMs are to be different in terms of number of
virtual CPUs (vCPU).

The rest of the paper is organized as follows. Section II
presents our model and the details of the analysis. Section
III presents the numerical results obtained from the analyti-
cal model. Finally, section IV summarizes our findings and
concludes the paper.

II. ANALYTICAL MODEL

In TaaS cloud, when a request arrives, a pre-built or
customized disk image is used to create one or more VM
instances. We assume that PMs are categorized into three
server pools: hot (i.e., with running VMs), warm (i.e., turned
on but without running VMs) and cold (i.e., turned off).
Each pool includes specific type of PMs. PMs in pools are
different in terms of virtual CPU (vCPU), number of cores
per CPU, RAM, disk and the degree of virtualization (i.e the
max number of running VMs on the PM).

Instantiation of a VM from an image and provisioning it
on hot PMs has the minimum delay compared to warm and
cold PMs. Warm PMs require some time to be ready for
provisioning and cold PMs require additional time to be started
up before a VM instantiation. In this work we allow users to
request more than one VM by submitting a super-task; a super-
task may contain more than one task, each of which requires
one VM. Each VM needs one vCPU and each vCPU may
run on multiple physical CUP cores [8]. The size of super-
task (i.e., number of VMs) and size of vCPU (i.e., number
of cores assigned to a vCPU) can be generally distributed.
For numerical validation the super-task size is assumed to
be uniformly or geometrically distributed but we truncate the
distribution of the value by MSS (Maximum Super-task Size).
MSS is the maximum number of VMs running on a single
PM. A super-task is shown in Fig. 1. We also use uniform
distribution for the vCPU size in the numerical section.

Disk
(Gig)

of vCPUs
per VM

RAM
(Gig)

of Cores

per vCPU #of VMs

Fig. 1. Specification of a typical super-task submitted by users.

Due to high interaction among tasks within a super-task,
each super-task will be provisioned on the same PM. A super-
task may request up to all available VMs or CPU cores on
a single PM. In this work, all VMs are the same in terms of
RAM and disk while each VM may request a different number
of CPU cores.

Server Assigning Module (SAM) starts with the hot pool to
provision the super-task on a PM machine. If the process is not
successful then SAM examines the warm pool. if there is no
PM in warm pool that can accommodate the super-task, SAM
refers to the cold pool. Finally, SAM either assigns a PM in
one of the pools to a super-task or rejects the super-task. As a
result, user requests (super-tasks) may get rejected either due
to lack of space in global queue or insufficient resource at the
cloud center. When a running task finishes, the capacity used
by that VM is released and becomes available for servicing
the next task.

We identify four main delays imposed by cloud computing
centers on a user requests: at first, it should be determined
whether cloud center has sufficient resources to fulfill the
super-task. Using SAM, we capture the details of delays in
the global queue as well as decision process. Then, VM
Provisioning Module (VMPM) undertakes the provisioning of
VMs. Therefore each task within super-task may experience
queuing delay at PM’s queue and VM provisioning process
delay. After all, the actual service can start. Therefore, the
response time can be considered as the sum of four above
mentioned delays and the actual service time.

In order to model each module precisely, we design two
stochastic sub-models for SAM and VMPM. We then connect
these sub-models into an overall performance model to com-
pute the task rejection probability and mean response delay.
We describe our analysis in the following sections.

A. Server Allocation Sub-Model

The server assigning module (SAM) may be represented
by the server allocation sub-model (SASM) shown in Fig. 2.
SASM is a two-dimensional Continuous Time Markov Chain
(CTMC) in which we take care of number of super-tasks in the
global queue as well as the current pool on which provisioning
is taking place. Since the number of potential users is high and
a single user typically submits super-tasks at a time with low
probability, the super-task arrival can be adequately modeled
as a Poisson process [9] with rate A,;. Super-tasks are lined
up in the finite global queue to be processed in a first-in,
first-out (FIFO) basis. Each state in Markov chain is labeled
as (4,7), where ¢ indicates the number of super-tasks in the
global queue and j denotes the pool on which the leading
super-task is under provisioning. State (0,0) indicates that

system is empty which means there is no super-task under
provisioning or in the global queue. Index j can be h, w or
c that indicates current super-task is undergoing provisioning
on the hot, warm or cold pool respectively. The size of global
queue is L, and one more super-task can be at the deployment
unit for provisioning thus, the capacity of system is Lg + 1.
Let P, P, and P, be the success probabilities of finding a

At |
Pnan Pnﬂh |
|
Hot Pool |
an(1-Pr)
Puay,
As> ™ @

Warm Pool

Fig. 2. Server allocation sub-model.

PM that can accept the current super-task in the hot, warm

and cold pool respectively. We assume that 1/ap, 1/a,, and

1/a, are the mean look up delays for finding an appropriate

PM in the hot, warm and cold pool respectively. Upon arrival

of first super-task, system moves to state (0, ~) which means

the super-task will be provisioned immediately in the hot pool.

Afterwards, depending on the upcoming event, three possible

transitions can occur:

(a) Another super-task has arrived and system moves to state
(1, h) with rate Ag.

(b) A PM in the hot pool admits the super-task so that system
moves back to state (0,0) with rate Pjap,.

(c) None of PMs in the hot pool has enough capacity to accept
the super-task, so the system will examine the warm pool
(i.e., moves to state (0,w)) with rate (1 — Py)ay,.

On state (0,w), SASM tries to provision the super-task on the

warm pool; if one of the PMs in warm pool can accommodate

the super-task, the system will get back to (0,0), otherwise,

SASM checks the cold pool (i.e., transition from state (0, w)

to (0, ¢)). If none of the PMs in the cold pool can provision

the super-task as well, the system moves back from (0,c)

to (0,0) with rate (1 — P.)«. meaning that the user request

(super-task) will get rejected due to insufficient resources in

the cloud center. During the provisioning in the cold pool,

another super-task may arrive and takes the system to state

(1, ¢) which means there is one super-task in deployment unit

and one awaiting in the global queue. Finally, the super-task

under provisioning decision leaves the deployment unit, once
it receives a decision from SASM and the next super-task at
the head of global queue will go under provisioning. In this
sub-model, arrival rate of super-task (Ag;) and look up delays

(1/ap,1/ay, and 1/q.) are external parameters and success
probabilities (P, P, and P,) are calculated from the VM
provisioning sub-model. The VM provisioning sub-model will
be discussed in the next section.

Using steady-state probabilities 7(; ;), blocking probability
can be calculated. Super-tasks may experience two kinds of
blocking events:

(a) Blocking due to a full global queue that occurs with the
probability of BP, = T(Lg,h) © T(Lyw) T T(Lyc)

(b) Blocking due to insufficient resources (PMs) at pools, with
the probability of

L
S ac(l—P.)
BP, = — 7
; o + A st
The probability of rejection is, then, Py.¢jcct = BP; + BP,. In
order to calculate the mean waiting time in the global queue,

we first establish the probability generating function (PGF) for
the number of super-tasks in the queue [9],

(i,c)

Lg
Q(z) = T(0,0) + Z(W(i,h) + Tiw) + (i) 2" (1
i=0
The mean number of super-tasks in the global queue is ¢ =
Q'(1). Applying Little’s law, the mean waiting time in the
global queue is given by
— q
wt = ————— 2
>\st(1 - Preject)
Look up time among pools can be considered as a Coxian
distribution with 3 steps. Thus it can be calculated as,

Top = Wan+ (1= P)((H/aw) + (1= Py)(1/ac))
1- Preject

B. VM Provisioning Sub-Model

Virtual Machine Provisioning Sub-Model (VMPSM) cap-
tures the instantiation, deployment and running of VMs on a
PM. Fig. 3 shows the VMPSM (a 4-dimensional CTMC) for a
PM in the hot pool. For the sake of simplicity in representation,
Fig. 3 just shows the VMPSM when each super-tasks has only
one task. A PM in warm or cold pool can be modeled as a
hot PM though, with some minor differences. Consequently,
each pool can be modeled as a set of VMPSM with the same
arrival and instantiation rate. Each state in Fig. 3 is labeled
by (4, j, k, 1) in which ¢ indicates the number of tasks in PM’s
queue, j denotes the number of task that is under provisioning,
k indicates the number of busy cores and [is the number of
VM that are already deployed on the PM. Note that we set the
queue size at each PM equal to the maximum number of VMs
that can be deployed on a PM. Therefore, a super-task can be
accepted by a PM if first, there is enough room in the PM’s
queue for all tasks within the super-task and second, if the PM
has sufficient number of free cores for the given super-task.
Let ¢, be the rate at which a VM can be deployed on a PM
at hot pool and p be the service rate of each VM. So, the total
service rate for each PM is the product of number of running

3)

VMs by p. State (0,0,0,0) indicates that the PM is empty
and there is no task either in the queue or in the instantiation
unit. The arrival rate to each PM in the hot pool is given by:
Ast(1 — BFy)

N,
in which N}, is the number of PMs in the hot pool.

The state transition in VMPSM can occur due to super-task
arrival, task instantiation or service completion. From state
(0,0,0,0), system can move to state (0,1,0,0) with rate \p;
at this state, because the instantiation unit is free the super-
task will go under provisioning immediately. From (0, 1,0, 0),
system may transit to (1, 1,0, 0) upon arrival of another super-
task. From state (0,1,0,0) system also may move to one
of the states {(0,0,1,1),(0,0,2,1),---,(0,0,m, 1)} with the
rate of p;¢py. Probability p; is the probability by which a
super-task my request ¢ cores for a single VM. From states
{(0,0,1,1),(0,0,2,1),---,(0,0,m, 1)} system can get back
to (0,0,0,0) with rate p (i.e., service completion rate), or
again upon arriving a super-task, system can move to one of
the states {(0,1,1,1),(0,1,2,1),---,(0,1,m,1)} with rate
An. Now consider the state (0,0,3,2) indicates two VMs
are running in which one of them employs one core and the
other one engages two cores. System can move to (0,0,2,1)
or (0,0,1,1) with rate 2up; (i.e., completed VM releases
one core) or 2upo (i.e., completed VM releases two cores)
respectively. Also, system may move to (0, 1, 3, 2) upon arrival
of another super-task.

Suppose that 7T'&]»7 D) is the steady-state probability for the
hot PM model (Fig. 3) to be in the state (4,7, k,[). Using
steady-state probabilities, we can obtain the probability that
at least on PM in hot pool can accept the super-task for
provisioning. At first we need to compute the probability that a
hot PM cannot admit a super-task for provisioning (P2)). Let
m be the total number of cores on a PM and MCS < m be the
maximum number of cores that can be requested by a super-
task. Since each VM requires at least one vCPU (i.e., one
core), the maximum number of VMs on a single PM (MSS) is
not going beyond m. In Fig. 3, let F, (7, j, k,1) = m—(i+j+I)
and Gy(i,7,k,1) = m — k be the free capacity and cores at
each state respectively. P" is then given by:

A = “)

MSS MCS

PlL=> Y w4 Y mps)

zel t=Fp+1 yel s=Gp+1

where P/ is the probability of arrival a super-task with size
t and £ is a set of states in which the system might block an
arrival super-task due to lack of space:

52{(77]ak7l)| Fh(iaj7kal) < MSS}

and p, is the probability by which a super-task may request
for s cores and (is a set of states in which the system might
block an arrival super-task due to lack of free cores:

C:{(Z7]»kvl)| Gh(iajvkal) < MCS}

Therefore, probability of successful provisioning (Py) in the
hot pool can be obtained as P, = 1 — (P",)N=. where N}, is

M

u

Pi®h " PmPn

Pi®n " PmaPn Pi®h " Pma®n

Fig. 3.

the number of PMs in the hot pool. Note that P, is used as an
input parameter in SASM (Fig. 2). The provisioning model
for warm PM is almost the same with the one for hot PM,
though, there are some differences in parameters:

(a) The arrival rate to each PM in warm pool is
Ast(1 — BPy)(1 — Fy)
Ny

(b) Every PM in warm pool requires extra time to be ready for
first instantiation. This time is assumed to be exponentially
distributed with mean value of 1/7,,.

(c) The first instantiation is occurred by rate ¢,, and the rest
by ¢p.

(d) The specifications of PMs in the warm pool are different
from hot pool. (i.e., MSS, MCS and m)

Like VMPSM for a hot PM (Fig. 3), the model for a warm

PM is solved and the steady-states probabilities (WE‘; ;. kJ)), are

obtained. The success probability for provisioning a super-task

in warm pool is P, = 1 — (P%)Y=. A PM in the cold pool

can be modeled as in the warm pool but with different arrival

rate, instantiation rate and start up time. The effective arrival

rate at each PM in the cold pool is given by:

Ast(1— BP)(1 - Py)(1 — Py)
NC

A cold PM (off machine), requires longer time than a warm
PM to be ready (hot) for the first instantiation. We assume

Ao = (6)

Ae = (N

Virtual machine provisioning sub-model for a PM in the hot pool.

that the start up time is also exponentially distributed with
mean value of 1/7.. The success probability for provisioning
a super-task in the cold pool is P. = 1 — (P¢,)"e. From
VMPSM, we can also obtain the mean waiting time at PMs’
queue (PM,,;) and mean provisioning time (PM,;) by using
the same approach as the one that led to Eq. (2). As a result,
the total delay before starting of actual service time, is given
by:

td = wt + lut + PMy + PMpy (8)
Note that all success probabilities (i.e., P, P, and P.) are
input parameters to the server allocation sub-model (Fig. 2).

C. Interaction among sub-models

The interactions among sub-models is depicted in Fig. 4.
VM provisioning sub-models (VMPSM) compute the steady
state probabilities (P}, P, and P.) that at least one PM in a
pool (hot, warm and cold, respectively) can accept a super-
task for provisioning. These probabilities are used as input
parameters to the server allocation sub-model (SASM). Hot
PM sub-model (VMPSMy,;) computes P, which is the input
parameter for both warm and cold sub-models; warm PM
sub-model (VMPSM,,4:,) computes P,, which is the input
parameter for the cold sub-model. The server allocation sub-
model (SASM) computes the blocking probability, BF,, which
is the input parameter to VM provisioning sub-models. As can

be seen, there is an inter-dependency among performance sub-
models. This cyclic dependency is resolved via fixed-point
iterative method [2] using a modified version of successive
substitution approach.

VMPSMcoig

VMPSMyarm

Fig. 4. Interaction among sub-models.

III. NUMERICAL VALIDATION

The resulting sub-models have been implemented and
solved using Maple 15 from Maplesoft, Inc. [10]. The suc-
cessive substitution method is continued until the difference
between the previous and current value of blocking probability
in global queue (i.e., BP,) is less than 107C. The integrated
model converges to the solution in 8 iterations or less. Table I
shows the specifications of PMs in each pool that we use for
the numerical validation.

TABLE I

SPECIFICATIONS OF PMS IN EACH POOL.
Parameters Hot Pool Warm Pool | Cold Pool
of CPU cores 10 8 4
RAM (GB) 40 25 10
Disk (GB) 500 250 200
Max # of VMs 10 8 2
of cores per vCPU 1,2,3 or 4 1,2 or 4 2o0r4

We show the effects of changing arrival rate, task service
time, number of PMs in each pool, number of VMs on
each PM and super-task size on the interested performance
indicators. Arrival rate ranges from 400 to 1000 STs per hour.
Mean service time of each task within STs ranges form 40 to
160 minutes. We assume 35 to 65 PMs in pools. The look-up
time for finding a proper PM is assumed to be independent of
the number of PMs in the pool and the type of pool (i.e., hot,
warm and cold). Look-up rate is set to 625 and 825 searches
per hour for warm and cold pools. Mean preparation delay
for a warm and cold PM to become a hot PM (i.e., be ready
for first VM instantiation) are assumed to be 1 to 3 and 5 to
10 minutes, respectively. Mean time to deploy a VM on a hot
PM is assumed to be between 4 and 10 minutes. First VM
instantiation on a warm and cold PM are to be between 4 to 7
and 8 to 12 minutes, respectively. After first VM instantiation
on a warm or cold PM, it has already become a hot PM so
that the next VM can be deployed just like a hot PM. The size
of global queue is set to 100 super-tasks (ST) and the number
of cores per vCPU is assumed to be uniformly distributed.

In the first experiment, the results of which is shown in Figs.
5(a) and 5(d), STs have one task each, and PMs are permitted
to run only one VM. Fig. 5(a) shows (at a constant arrival rate
of 500 STs/hr and different numbers of PMs in each pool) that
by increasing the mean service time the rejection probability
increases almost linearly. The configuration [21,14,12] seems
to be a reasonable choice to maintain the rejection probability
below 15%. In addition, it can be observed that by increasing
the capacity of system (i.e., having more PMs in the pools)
the maximum gain occurs at the longest service time (i.e.
160 minutes). Fig 5(d) shows that a longer service time
will result in longer total delay on STs. Unlike the rejection
probability, Fig. 5(a), there is no unique service time that yield
the maximum gain for all pool configurations.

Under different arrival rates, we also determine the two
performance metrics while the average service time is set to
60 min, Figs. 5(b) and 5(e). One turning point can be noticed
in rejection probability curves at which rejection probability
increases suddenly. Such points, e.g., Fig. 5(b), 500 STs/hour
for configuration [27,18,14], may suggest the appropriate time
to upgrade or inject more resources (i.e., PMs). However,
in case of total delay, two turning points (three regimes of
operation) can be identified, Fig. 5(e): the first regime (i.e.,
stable regime) is the region in which the cloud providers
would like to operate. (Admission control may use provided
information here and helps the cloud centers to operate in such
regime by not accepting extra requests) Transient regime is
in between two turning points which the total delay increases
sharply. Cloud centers should avoid entering such region since
the violation of SLA is about to happen. As the transient
regime is not too narrow, it is possible for cloud center to
return to stable zone after a short time (i.e., the admission
control has enough time to adjust the new admissions). The
transient regime is attributed to the size of global queue. The
longer the global queue is, the wider the transient regime is
going to be. In saturation regime, the total delay for some
configurations such as [15,10,10], [18,12,11] and [21,14,12]
is even getting decreased at the expense of high rejection rate
of super-tasks. This area of operation is totally unpleasant for
both cloud providers and users since the cloud center is mostly
unavailable for majority of the users.

In the last experiment, Figs. 5(c) and 5(f), we examine
the effect of super-task size on task rejection probability and
total delay using of geometric (shown with lines) and uniform
(shown with symbols) distributions for super-task size. Each
VM will be assigned one vCPU and each vCPU may use
multiple cores (details in Table I). Number of cores per vCPU
is assumed to be uniformly distributed. A super-task may
request up to all of the available VMs and cores on a PM.
Note that the aggregate arrival rate is set to 3500 tasks/hr,
however the effective arrival rate of super-tasks is various for
different super-task size. For instance, if the average super-
task size was five, then the effective arrival rate of super-tasks
would be 700 STs/hr. As can be seen by increasing the size of
super-tasks the rejection probability reduces sharply for both
geometric and uniform distribution. Since the size of super-

0.4 . .
[30,20,15] — — [27,18,14] —— [24,16,13] 06 [30,18,14] — — [27,18,14] —— [24,16,13] 07 Pp—
[21,14,12] — - [18,12,11] —-— [15,10,10] [21,14,12] — - [18,12,11] —-— [15,10,10] Ny [15.10,10]

0.67 N\ [18,12,11] | — *
5 03] _ s 3 . o [21,14,12]
£ 7 2 3 0.5 * [24,16,13] | — | +
§ o 2 ® o [27,18,14] *
. e S 30,20,15,
§ -7 ~ 7 B § § 041 02013
é 0.2 - - é “i)
: o _ 7 3 $034
3
E e ~ E =
g 7 - g < 0.2 o
0.4 7 s [&
e *
7 g 0.1
7 - / .
o4 - 0 —

— : - T
80 100 120 140 500 600

Mean service time (minute)

700
Arrival rate (per hour)

o

800 900 1000

Ave. super-task size

(a) Rejection probability: arrival-rate=500 (b) Rejection probability: service-time=60 (c) Rejection probability: service-time=60 minute, ag-
tasks/hour. minute. gregate arrival-rate=4500 tasks/hour.
6001 [30,20,15] — — [27,18,14] —— [24,16,13] 007 o 4001
[21,14,12] — - [18,12,11] —-— [15,10,10] NS T ——
500 @5@ 1 s — 1 - = - — _
. \300_@&, /,’ , S %30& g‘—
e R A 7| saturation regime R Lo
§ “00) E; ool / p / — = [15,10,10] E’ 2001 ::ml Configura‘io“r.l Dist
E 2 [— -[81211] I | /151010
N K Iy @ [21,14,12] 3 18.12.11
= 200 S ; @Q\@ L 3 [18,12,11]
Ly & 12416,13] wood 21.14,12]
1004 / o ——[27,18,14] [24,16,13]
100 r/ /& 730,20,15] [27,18,14] | -
. / S, 130.20,15] !
. e} T T T T

T T T T T T T
80 100 120 140 400 500 600

Mean service time (minute)

T
700

Arrival rate (per hour)

<
o0

800 900 1000 2 3 4

Ave. super-task size

(d) Total delay on a super-task: arrival-rate=500 (e) Total delay on a super-task: service-time=60 (f) Total delay on a super-task: service-time=60 minute,

tasks/hour. minute.

Fig. 5.

tasks is truncated to the maximum number of VMs allowed
on each PM (here, up to 8 VMs), the bigger super-task size
will result in the lower number of arrivals as well as lower
deviation of super-task size. As can be seen, by increasing the
capacity the maximum delay occurrs when the mean size of
STs is 6, and the maximum reduction of delay is obtained
when the mean size of STs is 8. For STs of size 6 or bigger,
the dominant imposed delays are the processing delays (i.e,
resource assigning and VM provisioning delays) as opposed
to the queuing delays. Due to higher deviation, the uniform
distribution imposes more rejections and delay on super-tasks.

IV. CONCLUSIONS

In this paper, we present a performance model suitable
for cloud computing centers with heterogeneous requests and
resources using interacting stochastic models. We quantify the
effects of variation in super-task arrival, task service time,
super-task size and VM size on quality of cloud services.
Our model provides a clear picture of cloud center operation
regimes so that a service provider can manage in advance to
stay in the desired operation region. Moreover, under different
configurations, the behavior of cloud center is characterized so
that an effective admission control can be achieved. We plan
to extend the heterogeneity in super-tasks (i.e., RAM and disk)
and server pools (i.e., different PMs in each pool) in our future
works.

aggregate arrival-rate=4500 tasks/hour.

Effective rejection probabilities and total servicing delays under different input parameters.

REFERENCES
[1]

H. Khazaei, J. MiSi¢, and V. B. Misi¢, “Performance analysis of cloud
computing centers using M/G/m/m + r queueing systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 23, no. 5, p. 1,
2012.

R. Ghosh, K. S. Trivedi, V. K. Naik, and D. S. Kim, “End-to-end per-
formability analysis for infrastructure-as-a-service cloud: An interacting
stochastic models approach,” in Proceedings of the 2010 IEEE 16th
Pacific Rim International Symposium on Dependable Computing, ser.
PRDC ’10, Washington, DC, USA, 2010, pp. 125-132.

A. Tosup, N. Yigitbasi, and D. Epema, “On the performance variability of
production cloud services,” in //th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, May. 2011, pp. 104-113.

H. Qian, D. Medhi, and K. S. Trivedi, “A hierarchical model to evaluate
quality of experience of online services hosted by cloud computing,” in
Integrated Network Management (IM), IFIP/IEEE International Sympo-
sium on, May. 2011, pp. 105-112.

N. Yigitbasi, A. Iosup, D. Epema, and S. Ostermann, “C-meter: A frame-
work for performance analysis of computing clouds,” in CCGRIDO09:
Proceedings of the 2009 9th IEEE/ACM International Symposium on
Cluster Computing and the Grid, 2009, pp. 472-477.

H. Khazaei, J. Misi¢, and V. B. Misi¢, “Performance analysis of
cloud centers under burst arrivals and total rejection policy,” in Global
Telecommunications Conference (GLOBECOM 2011), 2011 IEEE, Dec.
2011, pp. 1-6.

H. Khazaei, J. MiSi¢, V. B. MiSi¢, and S. Rashwand, “Analysis of a pool
management scheme for cloud computing centers,” IEEE Transactions
on Parallel and Distributed Systems, vol. 99, no. PrePrints, 2012.
VMware, Inc., “VMware VMmark 2.0 benchmark results,” Website,
Sept. 2012, http://www.vmware.com/a/vmmark/.

G. Grimmett and D. Stirzaker, Probability and Random Processes,
3rd ed. Oxford University Press, Jul 2010.

Maplesoft, Inc., “Maple 15,” Website, Mar. 2011, http://www.maplesoft.
com.

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]
[10]

