Analyzing The Impact of Provisioning Overhead
Time 1n Cloud Computing Centers

Haleh Khojasteh, Jelena MiSié, and Vojislav B. Misi¢
Ryerson University, Toronto, Canada

Abstract—In this paper, we analyze an efficient pool manage-
ment model for cloud systems that partitions the servers (physical
machines) into a hot and cold pool to improve energy efficiency.
Servers are moved them from one pool to the other as needed
to fulfill the incoming task requests, which are provisioned on
virtual machines running on the servers. The model features two
levels of task admission control: one at the global input, the other
at each server separately. We examine the behavior of the cloud
system in the regions of linear operation, transition to saturation
and saturation, from the viewpoint of task rejection rates and
energy consumption. Furthermore, we evaluate the sensitivity of
task blocking probability and energy consumption to the pool
partitioning threshold and the value of mean look up time in hot
and cold pools, respectively, in different test scenarios.

I. INTRODUCTION

In an Infrastructure-as-a-Service (IaaS) cloud, an incoming
task service request undergoes several processing steps before
being actually provisioned on a Virtual Machine (VM) exe-
cuting on a designated server or Physical Machine (PM) [3].
These processing steps generally pertain to the search for a
suitable PM that will provision the task; moving the task to
the selected PM; and, finally, waiting for the instantiation of
the VM on which the task will execute. Admission control
through task rejection or blocking is thus performed at two
steps along the way: at the global input queue and at the input
queue of the selected PM.

To reduce energy expenditure incurred by PMs running idle,
PMs are often partitioned into pools. For example, the model
presented in [4] deals with three pools, hot pool with PMs
that are always on and VMs already instantiated, warm pool
with PMs that are on but without any instantiated VMs, and
cold pool that consists of PMs switched off. In this setup, PMs
are moved from cold to warm to hot state in order to fulfill
the incoming task requests, and moved back to warm or cold
pool when there is idle capacity in order to reduce energy
consumption. The performance of the cloud center is then
evaluated using the tools of probabilistic analysis and queueing
theory. However, the emphasis was on the performance in
saturation region, which is not the preferred operational regime
for cloud providers as the achievable performance levels, esp.
task blocking rate, is not very good; moreover, the analysis in
that paper does not consider energy consumption in detail.

An extension of that analysis is presented in [5] where
the focus was on linear and transitional regime, rather than
on saturation regime. An interesting finding was that the
aggregated metric of offered load, similar to the metric used to
characterize networking systems, is insufficient to characterize

the behavior of the cloud system. This is caused by the
overhead incurred in processing the incoming task requests
and admission control activities, which are dependent on the
task arrival rate but not on the task service time.

In this paper, we consider a simpler model in which parti-
tioning uses two pools only: the hot pool in which PMs are
running with the maximum number of VMs instantiated and
ready to provision user requests, and the cold pool in which
PMs are turned off. We assume that the number of PMs in the
hot pool does not fall below a predefined threshold, which
serves to maintain the performance at an acceptable level.
Our focus is again on the linear and transitional operational
regimes which are much more interesting to cloud service
providers, rather than the saturation regime in which task
blocking reaches values that are unacceptably high in practice.
We evaluate the performance of the cloud system expressed
as task blocking rate and energy expenditure. Furthermore,
we evaluate the sensitivity of the energy expenditure on the
partitioning threshold, as well as on the mean look up time in
the hot and cold pools.

The rest of the paper is organized as follows: In Section II,
we survey related work in cloud resource allocation. Section
IIT presents the stochastic sub-models and their interactions.
Section IV presents the numerical results obtained from the
analytical model. At last, Section V concludes the paper.

II. RELATED WORK

Several research groups have been working on resource
allocation and provisioning issues in the cloud.

In [6], authors have proposed two adaptive algorithms for
resource allocation and task scheduling that adjust the resource
allocation adaptively based on the actual task execution time.

The work presented in [8] has proposed a dynamic resource
allocation in which job requests are characterized according to
their arrival and teardown times, and allocation is made on the
basis of a predictive profile of their computing requirements
during their activity period.

In [1], an algorithm has been presented which forms groups
of VM instances based on their runtime deadlines and packs
VMs in the same group on the same servers. In order to
reduce energy consumption, the algorithm can shut down some
servers when the service request rate decreases.

The ad hoc parallel data processing framework presented
in [9] exploits dynamic resource allocation for both task
scheduling and task execution in IaaS clouds. Specific tasks
of a processing job can be assigned to different types of VMs.



N
=
100 10H

e a,1-7,)

a(1-R)

[00d PIOD

Fig. 1. Resource allocation.

In [10], the energy efficiency of virtual resource allocation
for cloud computing has been formulated as a multi-objective
optimization problem and the problem has been solved by
intelligent optimization algorithm.

In [2], authors have proposed a resource allocation model
using combinatorial auction mechanisms which uses energy
parameters. Three algorithms have been introduced for differ-
ent aspects of resource allocation.

However, the impact of the provisioning time and, more
specifically, the look up time needed to find a suitable PM in
the appropriate pool has largely been ignored so far.

III. THE MODEL OF THE CLOUD SYSTEM

An IaaS cloud center consists of a number of PMs (servers)
running a number of VMs each that fulfill task requests
submitted by users. All task requests are provisioned using
a customized disk image [3]. For simplicity, we assume that
the PMs are homogeneous as are the VMs, and that pre-built
images satisfy all service requests. Also, we assume that each
task request can be provisioned on a single VM.

A. Resource allocation

An incoming task request is first received in the global
input queue, where it waits processing by a resource allocation
module. This module will search the hot and cold pools for
the required resources, i.e., PMs with idle capacity. If such a
PM is found, the module will allocate the task to it, possibly
instructing the PM to be switched on in the process; otherwise,
the task may be rejected in what is effectively the first level
of admission control. The operation of the resource allocation
module can be described with a Continuous Time Markov
Chain (CTMC) shown in Fig. 1. Task request arrivals are
modeled as a Poisson process with rate \;. Task requests are
lined up in the global finite queue with a maximum capacity
of L, to be processed. Each state of the CTMC in Fig. 1 is
labeled as (4,7), where i denotes the number of tasks in the
queue and j presents the pool on which the current task is
under provisioning. Index h and c indicate hot and cold pool
respectively. P, and P, present success probabilities of finding
a PM that can accept the current task in the hot and cold
pool respectively. 1/ay, and 1/« are mean look up times for
finding an adequate PM in hot and cold pool respectively. The
resource allocation module also calculates the task blocking

probability, Py, which is the input parameter for the modules
described below.

B. Virtual machine provisioning

If the task is allocated to one of the PMs, it is transferred to
the input queue of the PM, which effectively implements the
second level of task admission control. Once the task reaches
the head of the said queue, the required VM is instantiated
and the task is actually provisioned, i.e., the actual service
starts. The operation of virtual machine provisioning module
managing the hot PM pool can be described with a CTMC
shown in Fig. 2. Each state of Markov chain is labeled by
(i,4) in which 7 denotes the number of tasks in PM’s queue
and j is the number of VM that are already deployed on
the PM. )\, is the arrival rate to each PM in the hot pool
and is in proportion to A;) and Np. ¢y, is the rate at which
a VM can be deployed on a PM in hot pool and p is the
service rate of each VM.The total service rate for each PM is
the product of number of running VMs by p. The maximum
number of VMs on a PM is equal to m and in this model,
it is set to 10. The virtual machine provisioning module
calculates the success probabilities (P, and P,) that at least
one PM in a given pool (hot and cold, respectively) can be
assigned to a task. Success probabilities are, then, used as input
parameters for the resource allocation module and the other
virtual machine provisioning module, as well as for the pool
management module described below. In addition, the hot PM
model provides the probability by which a hot PM becomes
idle, P;. An analogous CTMC, but with different transition
rates, can be drawn for the corresponding module managing
the cold pool.

Also, pool management module computes N, and N, as
input for hot and cold PM sub-models respectively.

C. Pool management

As noted above, a cold PM is switched on and populated
with the required number of VMs when there is no capacity
in the hot pool to satisfy user requests. Conversely, if a hot
PM is idle for a predefined time, it is switched off. However,
the number of PMs is never below a predefined threshold in
order to maintain acceptable performance. The management
of PM pools is done by a separate module, the operation of
which can be described by a two dimensional CTMC shown in
Fig. 3. The system starts from the state (7, ) which indicates



P
(2 Py

Fig. 2. Virtual machine provisioning in the hot pool.

Fig. 3. Pool management.

that 7 and 5 PMs are in the hot and cold pool, respectively. If
next search in the hot pool is successful (with probability of
Pp), system will remain in the starting state, otherwise one of
the cold PMs will be moved into the hot pool. This transition
occurs with the rate of F'R.. With higher demand of PMs,
cold PMs can become hot PMs gradually until all the PMs
are hot. Also, due to the low demand of resources, idle hot
PMs will be turned off gradually, but the number of hot PMs
cannot get less than /N. The idle hot PM is moved to the
cold pool by rate of RP;.

D. Solving the integrated model

Our overall model thus consists of three inter-connected
stochastic models which compute the cloud performance
parameters such as task blocking probability and energy
consumption. However, there is a cyclic inter-dependency
among the modules, which can be resolved using fixed-point
iterative method [7] through a modified version of successive
substitution approach presented in Algorithm 1.

IV. PERFORMANCE EVALUATION

In our experiments, the total number of available PMs is
maintained at a constant value of N = 100. The threshold

Algorithm 1 Iterative Algorithm for Substitution
Input: Starting success probabilities in pools: Py, Peo;
Input: Starting idle probability of a hot PM: P;g;
Output: First level of probability of blocking: Py;
count <— 0; maximum <— 30; A <«— 1;
Pygo <— (PhO, Pc0) (from resource allocation);
[Np, Ne] «— (Pro, Pio) (from pool management)
while A > 106 do
count <— count +1;
[Pr, P;] <— (Pogo, Np) (from hot VM provisioning);
P, «— (Pyq0, Pn, N.) (from cold VM provisioning);
[N, N.| «— (Pn, P;) (from pool management)
Pyg1 <— (Py, P.) (from resource allocation);
A < [(Pogr — Pogo)l;
Pygo <— Pyq1;
if count = maximum then
break;
end if
end while
if count = maximum then
return -1;
else
return Pygo;
end if

coefficient ~y determines the initial partitioning of the PMs
between hot and cold pools, with YN PMs in the hot pool
and (1 — )N PMs in the cold pool. As noted above, the
number of PMs in the hot pool can never drop below yN.

Due to space limitations, we do not show the actual equa-
tions describing the model, as they closely follow the analysis
presented in [5]. Instead, we show just the results obtained
from the solution of the model.

The response time or total delay is the sum of four provi-
sioning times: waiting in the global queue, processing in the
resource allocation module, waiting time in the PM queue, and



Energy consumption

02 0.1

(a) Energy consumption, mean look up time in the cold
pool 12 seconds.

Task Blocking Probability

0.03
0.025
0.02
0.015
0.01
0.005

(c) Task blocking probability, mean look up time in the
cold pool 12 seconds.

Energy consumption

(b) Energy consumption, mean look up time in the cold
pool 7.2 seconds.

Task Blocking Probability

(d) Task blocking probability, mean look up time in
cold pool 7.2 seconds.

Fig. 4. Performance of cloud data center at mean service time 40 minutes, mean look up time in the hot pool 18 seconds, task arrival rate variable from 100

to 600 per hour.

VM instantiation and deployment, to which the actual service
time should be added [3], [4], [5]. We note that:

e Mean waiting time in global queue (wt) is exponentially
distributed with mean value of task arrival rate (1/\;).

« Mean look up time between the pools (lut) has a Coxian
distribution with two steps of look-up time between hot
and cold pools [3].

e Mean waiting time in the input queue of the select PM
(PM,,;) is exponentially distributed for each pool with
mean values of arrival rate (1/\, and 1/). that are in
proportion to 1/\;).

e Mean waiting time for VM provisioning (pt) is expo-
nentially distributed with mean value of task arrival rate
(1/Ae).

A. Cloud system behavior at low loads

In our first experiment, we have investigated the impact
of system load and pool threshold on energy consumption
and task blocking, under the conditions of low system load
(values of p up to 0.4). Mean task service time is assumed to
be constant at 40 minutes, so that the adjustment of system
load is achieved through the adjustment of task arrival rate.
Task rejection probability is obtained from the model. Energy
consumption is calculated by considering the mean time T,
spent in each state of the Markov chain in Fig. 3 and power
consumption J,, of a hot machine, as

E.=Y Ny 6, T (1)
seg

where £ is the set of states of the Markov chain from Fig. 3,
while N},_ is the number of PMs in hot pool in state s. In this
paper, 0, is assumed to be 1, as all PMs are assumed to be
homogeneous; the resulting values of energy expenditure may
be interpreted as ‘the mean number of PMs that are on.” The
resulting diagrams are shown in Fig. 4.

As can be seen, energy consumption, shown in Figs. 4(a)
and 4(b), is approximately linearly dependent on the pool
threshold, as could be expected. However, it is initially nearly
independent of the system load, up about p = 0.2, but then
increases rapidly. This is caused by the fact that in the first
part of the range of values for p, the current number of PMs
in the hot pool suffices to service the incoming task requests.
However, the increase of the load in second part of the range
of values for p means that more PMs are switched on (i.e.,
moved into the hot pool), with the associated increase in
energy consumption.

At the same time, the blocking probability in Figs. 4(c) and
4(d) is comparatively low, well below 1% in the most part
of the observed range, but it does rise when the system load
increases. Also, blocking probability remains low as long as
the pool threshold is kept near the maximum value of v = 0.4,
but it does increase at lower values of «. The rationale for
such behavior is simple: when the pool threshold is low, most
PMs are kept in the cold pool (i.e., they are switched off),
and they are brought in to the hot pool only when there is
a need. However, this action incurs a certain overhead which
may cause some tasks to be rejected. Keeping more PMs in



Energy consumption

80
70
60

50
0.8

0.25 0.4
0.2

(a) Energy consumption, mean look up time in the cold
pool 6 seconds.

Task Blocking Probability

0.25
0.2 04

(c) Task blocking probability, mean look up time in the
cold pool 6 seconds.

Energy consumption

(b) Energy consumption, mean look up time in the cold
pool 4.5 seconds.

Task Blocking Probability

(d) Task blocking probability, mean look up time in
cold pool 4.5 seconds.

Fig. 5. Performance of cloud data center at mean service time 40 minutes, mean look up time in the hot pool 7.2 seconds, task arrival rate variable from

500 to 1200 per hour.

the hot pool helps reduce the number of rejected tasks and
keeps the blocking probability low; since the mechanism of
moving the PMs between pools is continuously adaptive to
the instantaneous load, the increase in blocking probability is
gradual and does not exhibit a distinct threshold such as the
one observed in the diagrams of energy consumption.

We have also used two values for the mean look up time in
the cold pool which correspond to the mean look up rates
of 300 (diagrams on the left) and 500 searches per hour
(diagrams on the right). The mean look up time in the hot
pool was kept constant at 200 searches per hour. We note
that faster search reduces both the energy consumption and
the task rejection probability, although the differences are not
significant in either case.

B. Cloud system behavior at high loads

We have repeated the first experiment but with the range of
system loads that is wider and extends well into higher loads,
up to p = 0.8; the mean look up times have been reduced
in order to make the system more responsive. As before, the
changes in system load were accomplished by changing the
mean task arrival rate while the mean task service time was
kept constant. The results are shown in Fig. 5.

As can be seen, the higher values of system load lead to
considerable increase in energy consumption as well as in

task blocking. As the task arrival rates are higher, a distinct
threshold may be observed in the diagrams for task blocking
probability, Figs. 5(c) and 5(c). The corresponding thresholds
in the diagrams for energy consumption can’t be seen — in
fact, they would be visible if the range of system loads were
extended downward towards values of p < 0.2.

But in either case, higher system load leads to higher energy
consumption and considerably higher task rejection rate. The
values seem to flatten at high system loads, but only because
the system has effectively entered saturation, with a large
number of incoming tasks rejected (values are well over 10%).
Operation in this regime is most likely unacceptable in practice
and should be avoided.

As before, shorter mean look up times (i.e., faster searches)
give a slight improvement in performance. This has motivated
us to conduct the experiments described in the next Subsection.

C. The impact of look up times on energy consumption

Finally, we have investigated the impact of look up times
on energy consumption; the resulting diagrams are shown in
Fig. 6. As can be seen, lower values of the mean look up time
in the cold pool results in higher energy consumption which
is due to faster searches and quicker bringing up of new PMs
into the hot pool. The increase is somewhat higher than in
the case of corresponding mean look up time in the hot pool,



Energy consumption

85+
807
75

707

4
45 5T o3 035 04
Mean look-up 6 65 7 0.25 ’

- Y
time in cold pool

(a) Energy consumption as the function of mean look
up rate in the cold pool; mean look up rate in the hot
pool constant at 7.2 seconds.

Energy consumption

887
86
84
82
80
787

4
45
555

Energy consumption

807
78
76
74
72
70
68
66

4
45 5T 035 4
Mean look-up > 6 g5 025 93

time in hot pool ’

(b) Energy consumption as the function of mean look
up rate in the hot pool; mean look up rate in the cold
pool constant at 7.2 seconds.

4
345

6 6 2
Mean look-up ~ 6.5 777 65 Mean look-up
time in hot pool time in cold pool

(c) Energy consumption as the function of mean look
up rates in the hot and cold pools; pool threshold kept
at a constant value of v = 0.4.

Fig. 6. The impact of look up times on energy consumption. Mean task arrival rate 1000 per hour, mean task service time 40 minutes.

which is caused by the additional overhead needed to turn on
a cold PM. The difference in impact between the mean look
up times in the cold and hot pools is confirmed in Fig. 6(c).

V. CONCLUSION

We have analysed the effects of pool threshold and mean
look up time in hot and cold pools on the performance of an
TaaS cloud system where PMs are partitioned into a hot and a
cold pool. Our results confirm that the system should operate
well below saturation in order to provide acceptably low task
rejection probability and energy consumption. Also, we have
shown that the performance is more sensitive to the mean look
up time for the PMs in the cold pool.

In our future work, we plan to investigate the performance of
the networked system as well as of the system with migration
of live VMs between servers (PMs).

REFERENCES

[1] L. Guan, Y. Wang and Y. Li. A Dynamic Resource Allocation Method in
TaaS Based on Deadline Time. In 14th Asia-Pacific Network Operations
and Management Symposium (APNOMS), pp. 1-4, September 2012.

[2] T. Huu and C. Tham. An Auction-based Resource Allocation Model for
Green Cloud Computing. In /EEE International Conference on Cloud
Engineering, pp. 269-278, March 2013.

[3] H. Khazaei, J. MiSi¢ and V.B. MiSi¢. Analysis of a Pool Management
Scheme for Cloud Computing Centers. In IEEE Transaction on Parallel
and Distributed Systems, 24(5):849-861, May 2013.

[4] H. Khazaei, J. MiSi¢ and V.B. Misi¢. A Fine-Grained Performance
Model of Cloud Computing Centers. In IEEE Transaction on Parallel
and Distributed Systems, 24(11):2138-2147, Nov 2013.

[5] H. Khojasteh, J. MiSi¢ and V.B. MiSi¢. Characterizing energy con-
sumption of IaaS clouds in non-saturated operation. submitted to IEEE
INFOCOM 2014 Workshop on Mobile Cloud Computing, Toronto,
Canada, April-May 2014.

[6] J. Li, M. Qiu, J. Niu, Y. Chen and Z. Ming. Adaptive Resource
Allocation for Preemptable Jobs in Cloud Systems. In /0th International
Conference on Intelligent Systems Design and Applications (ISDA),
pp- 31-36, Nov 2010.

[7] V. Mainkar and K. S. Trivedi. Sufficient conditions for existence of
a fixed point in stochastic reward net-based iterative models. In IEEE
Transactions on Software Engineering, 22(9):640-653, September 1996.

[8] D. Tammaro, E. Doumith, S. Zahr, J. Smets and M. Gagnaire. Dynamic
Resource Allocation in Cloud Environment Under Time-variant Job
Requests. In Third IEEE International Conference on Cloud Computing
Technology and Science, pp. 592-598, Nov 2011.

[9]1 D. Warneke and O. Kao. Exploiting Dynamic Resource Allocation for
Efficient Parallel Data Processing in the Cloud. In /EEE Transactions
on Parallel and Distributed Systems, 22(6):985-997, June 2011.

[10] L. Xu, Z. Zeng and X. Ye. Multi-objective Optimization Based Virtual
Resource Allocation Strategy for Cloud Computing. In IEEE/ACIS 11th
International Conference on Computer and Information Science, pp. 56—
61, May 2012.



