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Abstract—Cloud centers often use virtualization which re-
quires live migration of virtual machines to improve perfor-
mance and availability. In this paper, we describe an analytical
performance model that measures the important performance
indicators, namely, rejection probability and total delay, of a
cloud center whilst taking into account live migration of virtual
machines. Using the proposed performance model, we show that
live virtual machine migration reduces task rejection probability
and renders the super-task delay nearly independent of mean
service time of individual tasks in a super-task.

I. INTRODUCTION

Cloud computing is rapidly gaining acceptance for making
computing resources, including infrastructure, platforms and
applications, accessible over the Internet as services [17], [1],
[5]. Many cloud solutions rely on virtualization to provide
computing resources in the form of Virtual machines deployed
on physical servers in the cloud data center. Virtual machines
are often migrated between different physical servers in order
to save energy, improve resource (i.e., server) utilization and
improve performance, as communication between applications
running on virtual machines within a single server is often
faster than between virtual machines running on different
servers. Migration of virtual machines can be done by tem-
porarily suspending the execution of a virtual machine, moving
it to another server, and resuming operation there. Recently,
technology has become available [18], [2], [15] that allows
live migration, during which the virtual machine that is being
migrated does not suspend execution, although its execution
may become slowed down somewhat due to the migration.

In this paper we analyze the performance of cloud systems
with live migration using Markov chain modeling and prob-
abilistic analysis. As the development of a monolithic model
is difficult and its analysis may be tedious, we propose to
break the model into two interacting stochastic models that
correspond to different servicing steps in a cloud system with
live task migration. The models are then jointly solved to
obtain the final solution.

The rest of the paper is organized as follows. In Section II,
we survey related work in cloud performance analysis, in
particular the work on live migration of virtual machines.
Sections III and IV present our analytical models for resource
management and virtual machine provisioning (including live
migration), respectively. Section V presents the numerical re-
sults, while Section VI summarizes our findings and concludes
the paper.

II. RELATED WORK

Cloud computing has attracted considerable research atten-
tion, including (lately) performance issues. In [20], a cloud
center is modeled as the classic open network with sin-
gle arrival, from which the distribution of response time is
obtained, assuming that both inter-arrival and service times
are exponential. Using the distribution of response time, the
relationship among the maximal number of tasks, the minimal
service resources and the highest level of services was found.

Our earlier work [7], [9] has presented general analytical
models that allow for an end-to-end performance analysis of
a cloud service, using service availability and provisioning
delay as two key QoS metrics. The proposed models reduce
the complexity of performance analysis of cloud centers by
dividing the overall model into sub-models and then obtaining
the overall solution by iteration over individual sub-model
solutions. However, these models did not consider live VM
migration and different servicing policies.

The performance of cloud computing services for scien-
tific computing workloads was examined in [6]. The authors
quantified the presence of Many-Task Computing (MTC) users
with real scientific computing workloads and performed an
empirical evaluation of the performance of four commercial
cloud computing services including Amazon EC2. They have
also compared the performance characteristics and cost models
of clouds and other scientific computing platforms through
trace-based simulation, for general and MTC-based scientific
computing workloads.

Live migration and its performance have become an inter-
esting topic only recently, when the technology to accomplish
it became available. However, most of the available research
results are obtained through experimentation. For example,
the authors in [21] studied the live migration efficiency of
multiple virtual machines from experimental perspective and
investigated different resource reservation methods and migra-
tion strategies in the live migration process. Experiments on
a virtualized systems were used to construct a performance
model using the probabilistic model checker PRISM in [10].
Performance models used to predict migration time from
application behavior and resource usage statistics were created
through profiling on an experimental Xen-based environment
in [19]. A different approach based on CPU scheduling and
checkpointing was described in [12], together with experimen-



tal data obtained on a prototype. Also, the performance of
live migration in two major virtualization environments was
reported in [3].

However, analytical performance analyses of live migration
are still scarce. This was the motivation for extending our
analytical models to include live virtual machine migration.

III. ANALYTICAL MODEL: RESOURCE MANAGEMENT

The cloud center consists of a number of physical servers
(PSs) that host a number of virtual machines (VMs), up
to a certain predefined limit. User requests (super-tasks) are
submitted to a the cloud center through a global finite queue
and then processed on the first-in, first-out basis (FIFO). Lack
of space in the global queue may result in a super-task being
rejected. Each user request is fulfilled by instantiating the
specified number of VMs on one or more PSs, in the order
of request arrivals. A user may ask for one or more VMs in
a single request, thus requests are referred to as super-tasks.
We assume that VM instances are created from pre-built or
customized disk images [7]; without loss of generality, these
pre-built images are assumed to be capable of fulfilling all
user requests.

When the request comes to the head of the global queue, the
system checks whether there are sufficient resources to service
it. Namely, if the number of VMs that can be instantiated
at this moment is smaller than the number requested by
the user, the super-task will be rejected. We assume that an
accepted super-task is broken into individual tasks which are
sent to appropriate PSs for instantiating the corresponding
VMs. Note that different tasks within the super-task may be
provisioned on VMs running on separate PSs. This approach
offers flexibility and reduced probability that a super-task will
be rejected due to insufficient resources. At the same time, the
communication overhead between the tasks in this case may
be somewhat higher than in the case where all tasks (and all
resulting VMs) from a super-task are provisioned on the same
PS.

Our first analytical model, the Resource Management Mod-
ule, captures the details of queuing at the global admission
control and at the PS input queue. The resource assignment
process is modeled with a two dimensional continuous time
Markov chain shown in Fig. 1(a).

Since the number of potential users is high and a single user
typically submits super-tasks at a time with low probability,
the super-task arrival can be adequately modeled as a Poisson
process [4] with rate A,;. super-tasks are lined up in the global
finite queue to be processed in a first-in, first-out (FIFO)
basis. Each state of Markov chain is labeled as (i, j), where
1 indicates the number of super-tasks in queue and j denotes
the admission control mode: ‘A’ for accept mode, and ‘R’ for
reject mode.

Initial state (0, A) corresponds to an empty system which
means there is no request in the queue and the arrival request
will be accepted. When the value of j is R, it indicates that
last PS provisioning has been unsuccessful. The global queue
size is set to L.

Let P, be the success probability of finding a PS that can
accept the current super-task. We assume that 1/ay is the
mean look up delays for finding an appropriate PS in the
cloud center. Upon arrival of first super-task, system moves to
state (1, A) which means the super-task will be provisioned
immediately. Afterward, depending on the upcoming event,
three possible transitions can occur:

(a) Another super-task has arrived and system transits to state
(2, A) with a rate of \g.

(b) A PS accepts the super-task so that system moves back to
state (0, A) with a rate of Psa.

(c) If none of PSs in the cloud center has enough capacity
to accept the super-task, the system will go to state (1,R)
with rate o(1 — Ps). In this state, system moves to (0, A)
with a rate of a which represents both successful and
unsuccessful provisioning. In other words, system will
give a second chance to the current super-task at the
head of queue for provisioning; in case of successful
provisioning system will get back to (0, A) with a rate
of a(1 — Ps) and otherwise it moves back to (0, A) with
a rate of Psa.

The rejection at (x,R) states is due to insufficient resources
at the moment and rejection at states (L4,A) and (L4,R) is due
to lack of space in the global queue.

The super-task leaves the queue once it receives a decision
from the resource management module, and the next super-
task at the head of global queue will go under provisioning.
In this sub-model, arrival rate of super-task (\s;) and look
up delay (1/a;) are exogenous parameters and success prob-
ability (P;) is calculated from the VM provisioning model
(which is discussed in detail in the next Section). The resource
management model is described by the balance equations
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from which, together with the normalization equation
L
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we can obtain steady-state probabilities 7(; jys and, eventually,
performance metrics such as blocking probability

Preject = BPq + BP, 3)

where the terms correspond to two types of blocking described
above, blocking due to a full global queue:

BPy = m(1,,4) + T(L,.R) 4)



and blocking due to insufficient resources in the system:

Lq
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To calculate the mean waiting time in queue, we must first
establish the probability generating function (PGF) for the
number of super-tasks in the global queue [16] as

Lq
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The mean number of super-tasks in queue may be obtained as
7=Q'(1) (7

Applying Little’s law [11], the mean waiting time in the queue
is given by 7
— q
=5 ®)
>\st(1 - Preject)
IV. ANALYTICAL MODEL: VIRTUAL MACHINE
PROVISIONING

The virtual machine provisioning model captures the instan-
tiation, deployment, live migration and provisioning of VMs
on a PS, as well as the actual service time during which
the task executes on the assigned VM. The model attempts
to provision all VMs from a super-task on a single PS; if
this can’t be accomplished, it will split the super-task into
individual tasks and provisions the corresponding VMs on
different PSs. VM migration is undertaken periodically in
order to reduce the number of VMs running on the same PS
which improves performance, as shown in [8].

Fig. 1(b) shows the virtual machine provisioning model
for a PS in the cloud center. The model is represented as
a continuous-time Markov chain where states are labeled as
(4,4, k): i denotes the number of tasks at the deployment unit
(i.e., a PS), j denotes the number of CPU cores on the PS,
and k£ denotes the number of VMs currently running on the
PS. Also, §; and S, denote the rates of inward and outward
migration of VMs, respectively; ., denotes the service rate
when x VMs are concurrently active on a PS; ¢ denotes the
instantiation rate; and A\ denotes the super-task arrival rate.
Note that the queue size (i.e., deployment unit size) at each
PS is set to be to the maximum number of VMs that can be
deployed on a PS.

Let ¢ be the rate at which a VM can be deployed on a PS,
and let p, be the service rate of each VM when x VMs are
running. Considering the effect of virtualization degree on the
service rate, the total service rate for each PS is the product
of the number of running VMs and the service rate p,. The
arrival rate to each PS in the cloud center is given by

Ast(1 — BFy)
N

where N is the number of PSs in the center. The value of BF,
used in (4) is actually obtained from the resource management
model described above.
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(a) Resource management model.
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(b) Virtual machine provisioning.

Fig. 1. Markov chains for the two sub-models.

The state transition in the Markov chain from Fig. 1(b)
can occur due to super-task arrival, task instantiation, live
migration or service completion. From the initial state (0, 0, 0),
the system can move to state (1,0,0) with a rate of A\. From
(1,0,0), system can either transit to (0,1,1) with a rate
of ¢ (which corresponds to VM instantiation) or, upon the
arrival of a task, to state (2,0,0) with a rate of A. From
(0,1,1), system can either move to (0,2,2) with rate 5;
(i.e., inward live migration), to (0,0,0) with rate (u1 + o)
(i.e., service completion or outward live migration), or (again
upon a task arrival) to state (1,1,1) with a rate of A. Using
these probabilities, we may describe the system with balance
equations and the additional normalization equation, in the
manner similar to (1) and (2).

A super-task will be rejected for provisioning if the total
number of spare VMs, taking all PSs into account, is lower
than the number required by the super-task. The probability
that the super-task can’t be provisioned can be calculated as
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where p; is the probability of the super-task having size ¢ and
Py is the probability of having no spare VMs on a PS:

Py = m(m0,0) + Tm=1,1,1) T+ T, m=1,m—1) T T(0,m,m)

Y



where 7(; ; 1 is the steady-state probability for the model from
Fig. 1(b) to be in the state (i, j, k).

Then, the probability of successful provisioning can be
obtained as

P,=1-P,, (12)

This value is used as an input parameter for the resource
management model, as explained above.

From the virtual machine provisioning model we can also
obtain the mean waiting time at PS queue (wtpys), mean
provisioning time (pt) and fragmentation of service time due
to live migration delay. As the down time of VMs during
the live migration is of the order of milliseconds, i.e., 60
milliseconds according to [2], we can safely ignore the last
component (pause time) in the calculation of the total delay,
which is given by

ﬂ=ﬁ+m+wtpM+17t (13)

We note that the steady state probability, P;, that a super-
task gets successfully provisioned is calculated by the virtual
machine provisioning model and fed to the resource manage-
ment model as an input parameter. The resource management
model computes the blocking probability, PB,, which is then
fed back to the VM provisioning model to calculate improved
probability values. This cyclic dependency is resolved via
fixed-point iteration [13] using a modified version of succes-
sive substitution method.

V. NUMERICAL VALIDATION

The analytical model described above has been implemented
and solved using Maple 15 from Maplesoft, Inc. [14]. We have
calculated two most important performance metrics, namely
rejection probability and total delay imposed on super-tasks;
the other parameters were set as shown in Table 1.

TABLE I
PARAMETER SETTING FOR THE ANALYTICAL MODELING.

Mean Value(s)
[60,90,- - -,210] (min)

Parameters

VM service time

Max # of VMs per PS 10
Optimum # of VMs per PS 4

# of VMMs on each PS 2

VM start-up 3 (min)
VM live migration 2.5 (min)
Live migration down time 60 (millisec)
PS Look-up time 2 (sec)
Global queue size 50 (super-task)
Super-task (super-task) size 6 (task)

Arrival rate

[10,20,- - -,60] (super-task/min)

The look-up time for checking the spare capacity of a
PS was set to 30 searches per minute, and assumed to be
independent of the number of PSs in the cloud center. Each
PS can run up to 10 VMs and the optimum number of running
VMs was 4. Here ‘optimum’ is meant as the limit below
which there is no degradation of VM throughput; above that
value, we have used the results from [8] to calculate the

performance penalty (i.e., degradation of VM service rate)
with respect to the virtualization degree (i.e., the number of
VMs running concurrently on the same PS). We have also
assumed geometric probability distribution for the super-task
sizes.

In this environment, we have examined the effects of vary-
ing task service time and arrival rate on rejection probability
and total delay. As can be seen in Fig. 2(a), rejection proba-
bility increases almost linearly as the service time get longer
in the system without live migration. When live migration
is introduced, variation of super-task service time does not
significantly affect the rejection probability, as the live VM
migration acts as an effective load balancing method that
prevents PSs from reaching their full capacity. Increasing
service time has virtually no effect on the total delay, as
could be expected due to nearly constant rejection rate in the
system with live migration, Fig. 2(a). However, total delay
decreases rapidly in the system with live migration, but only
because many super-tasks are rejected; those that manage to
get through will get into service slightly faster than in the
system with live migration.

By increasing the rate of super-task arrivals, rejection prob-
ability increases both with and without live migration (Fig.
3(a)). Live migration does mitigate the rejection slightly by
balancing the workload among PSs. In both scenarios total
delay decreases with the increase in super-task arrival rate,
3(a). At higher arrival rates, new arrivals are quickly rejected
due to lack of capacity; this leads to almost empty queues at
both system and PS level, which in turn reduces the queuing
delay for some of the new arrivals, in particular after some of
the tasks currently executing finish and release resources.

VI. CONCLUSIONS

In this paper we have presented an analytical model suitable
for performance evaluation of IaaS cloud centers with live
migration of VMs. We have examined the effects of super-
task arrival rate and task service time on rejection probability
and total delay for super-tasks. Our future work will focus
on optimal policies for live task migration with the goal of
optimizing relevant parameters such as energy consumption
and cloud center performance.
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