
IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. X, NO. Y, 201Z 1

Analysis of a Pool Management Scheme
for Cloud Computing Centers

Hamzeh Khazaei, Student Member, IEEE, Jelena Mišić, Senior Member, IEEE,
Vojislav B. Mišić, Senior Member, IEEE, and Saeed Rashwand, Student Member, IEEE

Abstract—In this paper, we propose an analytical performance model that addresses the complexity of cloud centers through
distinct stochastic sub-models, the results of which are integrated to obtain the overall solution. Our model incorporates the
important aspects of cloud centers such as pool management, compound requests (i.e., a set of requests submitted by one user
simultaneously), resource virtualization and realistic servicing steps. In this manner we obtain not only a detailed assessment
of cloud center performance, but also clear insights into equilibrium arrangement and capacity planning that allows servicing
delays, task rejection probability, and power consumption to be kept under control.

Index Terms—cloud computing, performance analysis, response time, blocking probability, pool management schema, power
consumption, interacting Markov models.

F

1 INTRODUCTION
Cloud Computing is a computing paradigm in which differ-
ent computing resources such as infrastructure, platforms
and software applications are made accessible over the
Internet to remote user as services [1]. Infrastructure-as-
a-Service (IaaS) cloud providers, such as Amazon EC2 [2]
and IBM Cloud [3], deliver, on-demand, operating system
(OS) instances provisioning computational resources in the
form of virtual machines deployed in the cloud providers
data center. A cloud service differs from traditional hosting
in three principal aspects. First, it is provided on demand;
second, it is elastic since users that use the service have as
much or as little as they want at any given time (typically
by the minute or the hour); and third, the service is fully
managed by the provider [4], [5]. Due to dynamic nature
of cloud environments, diversity of user requests, and time
dependency of load, providing agreed quality of service
(QoS) while avoiding over-provisioning is a difficult task
[6].

Service availability and response time are two impor-
tant quality measures in cloud’s users perspective [7].
Quantifying and characterizing such performance measures
requires appropriate modeling; the model ought to cover
vast parameter space while being tractable. A monolithic
model may suffer from intractability and poor scalability
due to large number of parameters [8]. Instead, in this paper
we develop and evaluate tractable functional sub-models
and their interaction model and solve them iteratively. We
construct separate sub-models for different servicing steps

• H. Khazaei and S. Rashwand are with the Department of Computer
Science, University of Manitoba, Winnipeg, Manitoba, Canada.
E-mails: {hamzehk,rashwand}@cs.umanitoba.ca

• J. Mišić and V. B. Mišić are with the Department of Computer Science,
Ryerson University, Toronto, Ontario, Canada.
E-mails: {jmisic,vmisic}@scs.ryerson.ca

in a complex cloud center and then the overall solution is
obtained by iteration over individual sub-model solutions
[9]. We assume that the cloud center consists of a number
of Physical Machines (PM) that are allocated to users in
the order of task arrivals. More specifically, user may share
a PM using virtualization technique. A cloud user may ask
for more than one virtual machine (VM) by submitting a
single compound request, hereafter referred to as a super-
task [10].

Our proposed model embraces multiple aspects and pro-
vides insight into their interactions of today’s cloud centers.
The main features of our analytical model can be listed as
follows:
• Assumes Poisson arrival of user requests;
• Incorporates compound user requests by introducing

super-tasks;
• Supports high degree of virtualization (e.g., up to 10

VMs on each PM);
• Captures different delays imposed by cloud centers on

user requests;
• Describes the dynamics of server pools and provides

the steady-state pools arrangement;
• Characterizes the service availability at cloud center;
• Provides information for capacity planning;
• Offers tractability and scalability;
The rest of the paper is organized as follows. In Section

2, we survey related work in cloud center performance
analysis. Section 3 presents the model and the details of
the analysis. Section 4 introduces the stochastic sub-models
and their interactions. Section 5 presents the numerical
results obtained from the analytical model. Finally, Section
6 summarizes our findings and concludes the paper.

2 RELATED WORK
Cloud computing has attracted considerable research atten-
tion, but only a small portion of the work done so far

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. X, NO. Y, 201Z 2

has addressed performance issues by rigorous analytical
models. Many research works carried out a measurement-
based performance evaluation of the Amazon EC2 [2],
[11], IBM Blue Cloud [3] or other cloud providers in
the context of scientific computing [12], [13], [14], [15],
[16], [17], [18], [19]. Here we survey those that proposed
a general analytical model for performance evaluation of
cloud centers.

In [20], the authors studied the response time in terms
of various metrics, such as the overhead of acquiring
and realizing the virtual computing resources, and other
virtualization and network communication overhead. To
address these issues, they have designed and implemented
C-Meter, a portable, extensible, and easy-to-use framework
for generating and submitting test workloads to computing
clouds. In [21], a cloud center is modeled as the classic
open network with single task arrival, from which the
distribution of response time is obtained, assuming Poisson
arrival process and exponentially distributed service time.
Using the distribution of response time, the relationship
among the maximal number of tasks, the minimal service
resources and the highest level of services was found.

In [22], the cloud center was modeled as an
M/M/m/m + r queuing system from which the dis-
tribution of response time was determined. The authors
computed waiting, service and execution periods assuming
that they are independent (which is not realistic according to
the authors’ own argument). Also the waiting and servicing
time do not capture virtualization or instance creation.

Our earlier work [23], [7], [10], [24] presents mono-
lithic analytical models which are much more restrictive
than our current work in terms of extendability, simplicity
and computation complexity. Also, [23], [7], [10], [24]
do not address the concept of virtualization as well as
heterogeneous server pools. All physical machines were
assumed to be up and running in one homogenous server
pool. Moreover, proposed models do not consider common
servicing steps in cloud computing centers. For instance,
only waiting time in the global queue was characterized.

The performance of cloud computing services for sci-
entific computing workloads was examined in [12]. The
authors quantified the presence of Many-Task Computing
(MTC) users in real scientific computing workloads. Then,
they performed an empirical evaluation of the performance
of four commercial cloud computing services including
Amazon EC2. Also, the authors compared the performance
characteristics and cost models of clouds and other sci-
entific computing platforms, for general and MTC-based
scientific computing workloads.

In [25], the authors quantified the resiliency of IaaS
cloud with respect to changes in demand and available
capacity. Using a stochastic reward net based model for
provisioning and servicing requests in a IaaS cloud, they
quantified the resiliency of IaaS cloud with respect to two
key performance measures, namely, task rejection rate and
total response delay. The scope of this work is limited to the
effects of abrupt changes in arrival process and the number
of physical machines.

A hierarchical modeling approach for evaluating qual-
ity of experience in a cloud computing environment was
proposed in [26]. Due to simplified assumptions, authors
applied classical Erlang loss formula and M/M/m/K
queuing system for outbound bandwidth and response time
modeling respectively.

In [9], the authors proposed a general analytical model
for an end-to-end performance analysis of a cloud service.
They illustrated their approach using IaaS cloud with three
pools of servers: hot, warm and cold, using service avail-
ability and provisioning response delays as the key QoS
metrics. The proposed approach reduces the complexity
of performance analysis of cloud centers by dividing the
overall model into sub-models and then obtaining the
overall solution by iteration over individual sub-model so-
lutions. However, proposed approach has some constraints
as follows:

• The model is limited to single task arrival per request;
• The proposed model does not consider interactions

among pools so no insight into steady-state arrange-
ment of the pools can be obtained.

• The effect of virtualization has not been accounted for
explicitly.

We recently proposed a fine-grained performance model
[27] in which we tried to address some of the shortcomings
mentioned above, including super-tasks that permit users
to submit multiple tasks at once, and a high degree of
virtualization (i.e., up to 10 VMs on a single PM) in
the model. However, the model in [27] assumes a fixed
number of PMs in each pool and does not consider dynamic
behavior of server pools.

As can be seen, no reported work covers all aspects
of cloud center performance as well as pool management
issues. This has motivated us to develop a comprehensive
model to analyze cloud center operation.

3 ANALYTICAL MODEL

In IaaS cloud, when a request is processed, a pre-built or
customized disk image is used to create one or more VM
instances [25]. In this work we assume that pre-built images
fulfill all user requests. We assume that Physical Machines
(PMs) are categorized into three server pools: hot (i.e., with
running VMs), warm (i.e., turned on but without running
VM) and cold (i.e., turned off) [9]. All PMs and VMs
are homogeneous and each PM has two Virtual Machine
Monitors (VMM) that configure and deploy VMs on the
PM. Instantiation of a VM from an image and provisioning
it on hot PMs has the minimum delay compared to warm
and cold PMs. Warm PMs require more time to be ready
for provisioning and cold PMs require additional time to be
started up before a VM instantiation. In this work we allow
users to submit super-tasks containing several tasks, each
of which requires a single VM. The number of unit tasks in
a super-task (i.e., its size) is a generally distributed random
variable, while unit tasks have independent and identically
distributed service times.

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. X, NO. Y, 201Z 3

G
lo

b
a
l

Q
u
e
u
e

VM Provisioning Module

Instance

Creation

VM Start up

P
M

Q
u

e
u

e VM

run-time
out

Time
Super-task

Arrival
Global Queuing

PM Provisioning &

Pool Management

Queuing at

each PM
VM Provisioning Actual Service

Time

Super-task blocking due

to insufficient capacity

Super-task blocking due

to lack of room in queue

in

FIFO FIFO

Fig. 1. The steps of servicing and corresponding delays.

If a user submits a super-task, it is very likely that
individual tasks within the super-task require a high degree
of interaction. As a result, we assume that all tasks within
a super-task should be provisioned on the same PM. This
assumption has two consequences. First, the super-task
size must be limited to the number of VMs on a single
PM. Second, all tasks within a super-task must begin
service at the same time, otherwise the super-task will
be rejected. The latter policy is often referred to as total
acceptance policy [28]. The other approach, known as
partial acceptance, may split a super-task so that individual
tasks run on different PMs. While this policy may reduce
the super-task rejection probability, it may also increase
inter-task communication overhead and idle waiting, and,
consequently, extend the overall service time. In this work,
we assume total acceptance policy, while the performance
of partial acceptance policy remains a promising topic for
future work.

The steps incurred in servicing a super-task are shown
in Fig. 1. User requests (super-tasks) are submitted to a
global finite queue and then processed on a first-in, first-out
basis (FIFO). A super-task that finds the queue full, will be
rejected immediately. Once the super-task is admitted to the
queue, it must wait until the Resource Assigning Module
(RAM) processes it (first delay), as follows. First, RAM
checks the hot pool for a PM with sufficient capacity. If
such a PM can’t be found, RAM moves on to the warm
pool. If a PM can’t be found there, RAM moves on to the
cold pool. Eventually, a super-task is either assigned to a
PM (second delay), or rejected due to insufficient system
capacity. Once the super-task is assigned to one of the PMs,
it will have to wait in that PM’s input queue (third delay)
until the VM Provisioning Module (VMPM) instantiates
and deploys the necessary VMs (fourth delay), when the
actual service starts. The overall response time is, then, the
sum of the delays mentioned above and the actual service
time. When a running task finishes, the capacity used by
the corresponding VM is released and becomes available

for servicing the next (super-)task.
The management of pools and movement of PMs among

them is the primary responsibility of the Pool Management
Module (PMM). While the first criterion that governs PMM
operation is to minimize the cloud center response time and
task rejection probability, the obvious solution that would
keep all PMs in the hot pool (i.e., always on) would lead to
excessive energy consumption. Hence the PMM needs to
switch idle PMs from hot to warm pool, or from warm to
cold pool, after a certain interval of inactivity, the duration
of which may be altered to suit the traffic load and other
operational parameters, as will be explained below.

To model the behavior of this system, we design three
stochastic sub-models, each of which captures the details
of the respective management module (RAM, VMPM, and
PMM) and combine them into an overall model. then,
we solve this model to compute the cloud performance
metrics: task rejection probability and mean response delay
as functions of variations in workload (super-task arrival
rate, super-task size, task mean service time, number of
VMs per PM), system capacity (i.e., number of PMs in
each pool), and design parameters such as the rate by which
idle hot PM powers down to either warm or cold pool. We
describe our analysis in detail in the following sections,
using the symbols and acronyms listed in Table 1.

4 INTEGRATED STOCHASTIC MODELS

As mentioned in section 2, due to high complexity of
cloud centers, the proposed monolithic models were hard
to analyze and extend. By introducing interacting analytical
sub-models, the complexity of system is divided so that they
can be analyzed accurately in order of processing steps.
Moreover, the sub-models are scalable enough to capture
the flexibility of the cloud computing paradigm.

In this paper, we implement the sub-models using inter-
active Continuous Time Markov Chain (CTMC). The sub-
models are interactive such that the output of one sub-model
is input to the other ones and vice versa. Table 2 shows the

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. X, NO. Y, 201Z 4

TABLE 1
Symbols and corresponding descriptions.

Symbol Description

RAM Resource Assigning Module

VMPM x Virtual Machine Provisioning Module for a PM
in the pool x; x could be hot, warm or cold

PMM Pool Management Module

RASM Resource Allocation Sub-Model

VMPSM x Virtual Machine Provisioning Sub-Model for a
PM in the pool x; x could be hot, warm or cold

PMSM Pool Management Sub-Model

MSS Maximum Super-task Size

m Maximum No. of VMs on a PM

pi Probability of having a super-task with size i

λst Mean arrival rate of super-tasks

Lq Size of global input queue

Ph, Pw, Pc Probability of successful search in hot, warm
and cold pool

1/αh, 1/αw, 1/αc Mean look up time in hot, warm and cold pool

BPq Blocking probability due to lack of room in the
global queue

BPr Blocking probability due to lack of capacity in
the cloud center

Preject Total probability of blocking (BPq +BPr)

Pi The probability by which a hot PM becomes
idle

1/R Mean searching time for finding an idle hot PM

1/SUw Mean start up time for a warm PM to become
a hot PM

1/SUc Mean start up time for a cold PM to become a
hot PM

1/FRw Mean time in which the lack of resource (PM)
in the hot pool is detected and a PM from warm
pool becomes hot

1/FRc Mean time in which the lack of resource (PM)
in the hot pool is detected and a PM from cold
pool becomes hot

σ Desired No. of PMs that PMM tries to maintain
in the warm pool for promoting the resiliency
of the cloud center

wt Mean waiting time in global queue

lut Mean look up delay among pools

φh, φw, φc Instantiation rate of a VM on a PM in the hot,
warm or cold pool

λh, λw, λc Arrival rate to a PM in the hot, warm and cold
pool

Nh, Nw, Nc Number of PMs in the hot, warm and cold pool

PMwt Mean waiting time in a PM queue

pt Mean VM provisioning time

td Mean total delay for a task before getting into
actual service

modules and their corresponding sub-models, which will
be discussed in detail in the following sections.

4.1 Resource Allocation Sub-Model

The resource allocation process is described in the Resource
Allocation Sub-Model (RASM) shown in Fig. 2. RASM is a

TABLE 2
Modules and their corresponding sub-models.

Module Stochastic sub-model
RAM RASM

VMPM hot VMPSM hot
VMPM warm VMPSM warm
VMPM cold VMPSM cold

PMM PMSM

two dimensional CTMC that records the number of super-
tasks in the global queue as well as the current pool on
which provisioning is taking place. Since the number of
potential users is high and a single user typically submits
super-tasks at a time with low probability, the super-task
arrival can be adequately modeled as a Poisson process
[29] with rate λst. Each state of Markov chain is labeled as
(i, j), where i indicates the number of super-tasks in queue
and j denotes the pool on which the leading super-task
is under provisioning. State (0, 0) indicates that system is
empty which means there is no request under provisioning
or in the queue. Index j can be h, w or c that indicate
current super-task is undergoing provisioning on hot, warm
or cold pool respectively. The global queue size is Lq and
one more super-task can be at the deployment unit for
provisioning thus, the capacity of system is Lq + 1.

Let Ph, Pw and Pc be the success probabilities of finding
a PM that can accept the current super-task in the hot, warm
and cold pool respectively. We assume that 1/αh, 1/αw and
1/αc are the mean look up delays for finding an appropriate
PM in hot, warm and cold pool respectively. Upon arrival of
first super-task, system moves to state (0, h) which means
the super-task will be provisioned immediately in the hot
pool. Afterwards, depending on the upcoming event, three
possible transitions can occur:

(a) Another super-task has arrived and system transits to
state (1, h) with rate λst.

(b) A PM in hot pool accepts the super-task so that system
moves back to state (0, 0) with rate Phαh.

(c) None of PMs in hot pool has enough capacity to accept
the super-task, so the system examines the warm pool
(i.e., transit to state (0, w)) with rate (1− Ph)αh.

On state (0, w), RASM attempts to provision the super-
task on warm pool. If one of the PMs in the warm pool
can accommodate the super-task, the system will get back
to (0, 0), otherwise RASM examines the cold pool (i.e.,
transition from state (0, w) to (0, c)). If none of the PMs
in cold pool can provision the super-task, the system moves
back from (0, c) to (0, 0) with rate (1 − Pc)αc which
means the user request (super-task) will get rejected due
to insufficient resources in the cloud center. During the
provisioning in cold pool, another super-task may arrive and
takes the system to state (1, h) which means there is one
super-task in deployment unit and one awaiting in global
queue. Finally, the super-task under provisioning decision
leaves the deployment unit, once it receives a decision from
RASM and the next super-task at the head of global queue

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. X, NO. Y, 201Z 5

0,0

λst

Lq,h1,h0,h

Lq,c1,c0,c

Lq,w1,w0,w

λst λst

αh(1-Ph)Pwαw

αw(1-Pw)αw(1-Pw)αw(1-Pw)

αh(1-Ph)αh(1-Ph)

λst

λst

...

...

...

Pwαw

Pwαw

λst

λst

λst

αc(1-Pc) αc(1-Pc)

αc(1-Pc)

H
o

t P
o

o
l

W
a

rm
 P

o
o

l
C

o
ld

 P
o

o
l

Pcαc

Pcαc

Pcαc

Phαh Phαw Pwαw Pwαw

Fig. 2. Resource Allocation Sub-Model (RASM).

will go under provisioning. In this sub-model, arrival rate of
super-task (λst) and look up delays (1/αh, 1/αw and 1/αc)
are exogenous parameters and success probabilities (Ph,
Pw and Pc) are calculated from the VM provisioning sub-
model. The VM provisioning sub-model will be discussed
in the next section.

Using steady-state probabilities π(i,j), blocking
probability can be calculated. Super-tasks may experience
two kinds of blocking events:

(a) Blocking due to a full global queue occurs with the
probability of

BPq = π(Lq,h) + π(Lq,w) + π(Lq,c) (1)

(b) Blocking due to insufficient resources (PMs) at pools
occurs with the probability of [30]

BPr =

Lq∑
i=0

αc(1− Pc)
αc + λst

π(i,c) (2)

The probability of reject is, then, Preject = BPq +BPr.
In order to calculate the mean waiting time in queue, we
first establish the probability generating function (PGF) for
the number of super-tasks in the queue [31], as

Q(z) = π(0,0) +

Lq∑
i=0

(π(i,h) + π(i,w) + π(i,c))z
i (3)

The mean number of super-tasks in queue is [28]

q = Q′(1) (4)

Applying Little’s law [32], the mean waiting time in the
global queue is given by (first delay):

wt =
q

λst(1−BPq)
(5)

Look up time among pools can be considered as a Coxian
distribution with 3 steps (Fig. 3).

Acc.

cw Rej.

P h

1-Ph

P cPw

1-Pw 1-Pc

Fig. 3. Three steps of look-up delays among pools.

Therefore according to [33], the look-up time (second
delay) can be calculated as follows.

lut =
1/αh + (1− Ph)((1/αw) + (1− Pw)(1/αc))

1−BPq
(6)

4.2 VM Provisioning Sub-Model

Virtual Machine Provisioning Sub-Model (VMPSM) cap-
tures the instantiation, deployment and provisioning of
VMs on a PM. VMPSM also incorporates the actual
servicing of each task (VM) on a PM. Note that each
task within super-task is provisioned with an individual
VM, but RASM makes sure that all tasks within a super-
task are provisioned at the same PM. Fig. 4 shows the
VMPSM (a CTMC) for a PM in the hot pool. As we
assume homogeneous PMs, VMs, and tasks, all VMPSMs
for the PMs in the hot pool are identical in terms of arrival
and instantiation rates. The same holds for the PMS in the
warm and cold pool – they can be modeled with the same
VMPSM, though with a different arrival and instantiation
rates. Consequently, each pool (hot, warm and cold) can be
modeled as a set of VMPSMs.

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. X, NO. Y, 201Z 6

0,0,0

MSS-3,2,10,1,10,0,1

LQ,2,0MSS-2,2,01,1,00,1,0

λ1 λ2 λMSS

...λ1 ...

φh φh
2φh

μ

...

μ

λ1 LQ-1,2,1 LQ,2,1...

LQ,0,m

LQ,1,m-1

φh

LQ-1,1,m-1
λ1

λ1

mμ

(m-1)μ

LQ-1,0,m

mμ
φh

...0,0,m

φh

0,0,m-1 λ1

mμ

(m-1)μ φh

...

λ1

(m-1)μ

λ1

λ1
0,1,m-1

λ1

φh

...

...

μ
μ

μ

λ1

2φh

2φh 2φh 2φh

λMSS

...

λ2

λ1

λMSS

...

λ1

λMSS

...

λ1

λMSS

...

λ2

λMSS

... λ2

λMSS
...

λ2

λMSS

...

λ2

...

...

2φh

2φh

2φh

(m-1)μ

λ1

λMSS

...

λ2

λMSS

...

λ2

Fig. 4. Virtual Machine Provisioning Sub-Model for a PM in the hot pool (VMPSM hot).

Each state in Fig. 4 is labeled by (i, j, k) in which i
indicates the number of tasks in PM’s queue, j denotes
the number of tasks that is under provisioning by VMMs
and k is the number of VM that are already deployed on
the PM. Since we assume two VMMs installed on each
PM, at most tasks can be provisioned simultaneously on
a PM. Note that we set the queue size at each PM to m,
the maximum number of VMs that can be deployed on a
PM. Let φh be the rate at which a VM can be deployed
on a PM at hot pool and µ be the service rate of each
VM. So, the total service rate for each PM is the product
of number of running VMs by µ. State (0, 0, 0) indicates
that the PM is empty and there is no task either in the
queue or in the instantiation unit. Depending on the size
of arriving super-task, model transits to one of the states in
{(0, 1, 0), (0, 2, 0), · · · ,(MSS − 2, 2, 0)}. Since all tasks
within a super-task are to be provisioned at the same PM,
maximum super-task size (MSS) is smaller or equal to m.
The arrival rate to each PM in the hot pool is given by:

λh =
λst(1−BPq)

Nh
(7)

in which Nh is the number of PMs in the hot pool. Note
that BPq , used in (1), is obtained from RASM. In Fig. 4,
{λi, i = 1..MSS} is given by λi = λhpi; here pi is the
probability of having a super-task of size i. We examine
truncated geometric and uniform distributions for numerical
experiment.

The state transition in VMPSM can occur due to super-
task arrival, task instantiation or service completion. From
state (0, 0, 0), system can move to state (0, 2, 0) with rate
λ2 (i.e., super-task with size 2). From (0, 2, 0), system

can transit to (0, 1, 1) with rate φh (i.e., instantiation
rate) or upon arriving a super-task with size k, moves to
state (k, 2, 0). From (0, 1, 1), system can move to (0, 0, 2)
with rate φh, transits to (0, 1, 0) with rate µ (i.e., service
completion rate), or again upon arriving a super-task with
size k, system can move to state (k − 1, 2, 1) with rate
λk. A PM can not accept a super-task, if there is not
enough room to accommodate all tasks within a super-task.
Suppose that πh(i,j,k) is the steady-state probability for the
hot PM model (Fig. 4) to be in the state (i, j, k). Using
steady-state probabilities, we can obtain the probability that
at least one PM in hot pool can accept the super-task for
provisioning. At first we need to compute the probability
that a hot PM cannot admit a super-task for provisioning
(Phna). Let Fh be the free capacity of the hot PM at each
state:

Fh(i, j, k) = m− (i+ j + k)

Phna is then given by:

Phna =
∑
x∈ξ

MSS∑
t=Fh+1

πhxpt (8)

where pt is the probability of having a super-task of size
t and ξ is a subset of VMPSM’s states in which there is a
chance of blocking for super-tasks:

ξ = {(i, j, k)| Fh(i, j, k) < MSS}

Therefore, probability of successful provisioning (Ph) in
the hot pool can be obtained as

Ph = 1− (Phna)
Nh (9)

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. X, NO. Y, 201Z 7

i,j,k i+1,j-1,k i+j-2,2,k

RPi

...

FRw

i+j-1,2,k-1

SU

i+j,1,k-1

FRw

i+j,2,k-2

SU

i+j,0,k

FRw

SU

i+j+k,0,0...

FRc

i+j+1,0,k-1

FRc

i+j+1,1,k-2

i+j+1,2,k-3

SU

SU

i+j-1,1,k

FRw

FRw

F
R

w

...

...

i+j+K-1,0,1

i+j+k-1,1,0

SU

F
R

w

FRc

RPi

RPi

RPi

RPi

RPiRPiRPi

RPi

RPi

RPi

RPi

i+j+k-2,2,0

F
R

w

RPi

RPi

FRw

FRw

RPi

FRw

RPi

i-1,j,k+1

0,2,i+k+j-2

...

RPi

RPi

RPi

F
R

c
FRw

F
R

w
F

R
w

FRc

Initial Configuration

No Running Task All PMs are Busy

Fig. 5. Pool Management Sub-Model (PMSM).

Note that Ph is used as an input parameter in the resource
allocation sub-model (Fig. 2). The provisioning model for
warm PM is the same with the one for hot PM, though,
there are some differences in parameters:
(a) The arrival rate to each PM in the warm pool is

λw =
λst(1−BPq)(1− Ph)

Nw
(10)

where Nw is the number of PMs in warm pool.
(b) Every PM in warm pool requires extra time to be ready

(hot) for first instantiation. This time is assumed to be
exponentially distributed with mean value of 1/γw.

Instantiation rate in warm pool is the same as in hot pool
(φh). Like VMPSM for a hot PM (Fig. 4), the model for
a warm PM is solved and the steady-states probabilities
(πw(i,j,k)), are obtained. The success probability for provi-
sioning a super-task in warm pool is:

Pw = 1− (Pwna)
Nw (11)

A PM in the cold pool can be modeled as in the warm and
hot pool but with different arrival rate and start up time.
The effective arrival rate at each PM in the cold pool is
given by:

λc =
λst(1−BPq)(1− Ph)(1− Pw)

Nc
(12)

in which Nc is the number of PMs in the cold pool. A cold
PM (off machine), requires longer time than a warm PM
to be ready (hot) for the first instantiation. We assume that
the start up time is also exponentially distributed with mean
value of 1/γc. The success probability for provisioning a
super-task in the cold pool is given by:

Pc = 1− (P cna)
Nc (13)

From VMPSM, we can also obtain the mean waiting time
at PM’s queue (third delay: PMwt) and mean provisioning

time (fourth delay: pt) by using the same approach as the
one that led to Eq. (5). As a result, the total delay before
starting of actual service time, is given by:

td = wt+ lut+ PMwt + pt (14)

Note that all success probabilities (i.e., Ph, Pw and Pc) are
input parameters to the resource allocation sub-model (Fig.
2).

4.3 Pool Management Sub-Model
Pool Management Sub-Model (PMSM) captures the details
of pools management in the cloud center. We model PMSM
as a three dimensional CTMC, Fig. 5. The system starts
with state (i, j, k) which indicates that i, j and k PMs are
in the hot, warm and cold pool respectively. If next search
in hot pool was successful (probability of Ph), system will
remain in the starting state, state (i, j, k), otherwise PMSM
will bring one of the warm PMs into the hot pool (requires
some time). Such transition occurs with the rate of FRw
which is defined as:

FRw =
1

λstBPq(1− Ph) + (1/SUw)
(15)

in which (1/SUw) is the mean time that a warm PM
becomes a hot PM.

In state (i, j, k), if one of the hot PM becomes idle (i.e.,
no running VM), the PMSM moves the idle hot PM to cold
pool (i.e., turn off) by going to state (i− 1, j, k+ 1). If all
PMs become idle, PMSM will move all the hot PMs to the
cold pool and maintain a minimum number of PMs (here
we assume 2 PMs) in the warm pool. As can be seen from
Fig. 5, state (i + j − 1, 1, k), PMSM turns on a cold PM
machine whenever the number of warm PMs gets lower
than 2. If the system is in state (i+ j, 0, k), in which there
is no warm PM at the moment, upon arrival of a new super-
task, PMSM will try to accommodate the new super-task

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. X, NO. Y, 201Z 8

on the current hot PMs. In case of lack of capacity for new
arrival, PMSM borrows a PM from cold pool with the rate
FRc, moving to state (i+ j + 1, 0, k − 1).

FRc =
1

λstBPq(1− Ph) + (1/SUc)
(16)

where (1/SUc) is the mean time that a cold PM becomes
a hot PM.

The state (i + j + k, 0, 0) indicates that all PMs in the
cloud center are hot and servicing users’ tasks. At any state,
if the number of PMs in the warm pool is less than a
predefined minimum (e.g., 2 PMs in Fig. 5), an idle hot
PM is moved to the warm pool at rate RPi, otherwise the
idle hot PM is moved to the cold pool (i.e., shut down).

4.4 Interaction among Sub-Models

The interactions among sub-models are depicted in Fig.
6. VM provisioning sub-models (VMPSM) compute the
steady-state success probabilities (Ph, Pw and Pc) that
at least a PM in one of the pools (hot, warm and cold,
respectively) can accept the super-task. These success
probabilities are used as input parameters to the resource
allocation sub-model (RASM). The hot PM sub-model
(VMPSM hot) computes Ph which is the input parameter
for both warm and cold sub-models. The warm PM sub-
model (VMPSM warm) computes Pw which is the input
parameter for the cold sub-model (VMPSM cold). In addi-
tion, the hot PM model provides Ph and the probability
by which a hot PM becomes idle (Pi) for pool man-
agement sub-model (PMSM). In return, PMSM computes
Nh, Nw and Nc as input for hot, warm and cold PM
sub-models respectively. The resource allocation sub-model
(RASM) computes the blocking probability, BPq , which
is the input parameter to VM provisioning sub-models as
well as PMSM. Table 3 shows the sub-models and their
corresponding outputs.

TABLE 3
Sub-models and their outputs.

Sub-model Output(s)
RASM BPq , BPr

VMPSM hot Ph, Pi
VMPSM warm Pw
VMPSM cold Pc

PMSM Nh, Nw , Nc

As can be seen, there is an inter-dependency among sub-
models. This cyclic dependency is resolved via fixed-point
iterative method [34] using a modified version of succes-
sive substitution approach. For numerical experiments the
successive substitution method (Algorithm 1) is continued
until the difference between the previous and current value
of blocking probability in the global queue (i.e., BPq) is
less than 10−6. Usually the integrated model converges to
the solution in less than 8 iterations.

RASM

Ph

Ph
Pw

Pc

Ph

BPq

BPq

BPq

VMPSM_warm

VMPSM_hot

VMPSM_cold

PMSM
Nw

Nc

Nh

Pw

Pi

Ph
BPq

Fig. 6. Interaction diagram among sub-models.

Algorithm 1 Successive Substitution Method
Input: Initial success probabilities in pools: Ph0, Pw0, Pc0
Input: Initial idle probability of a hot PM: Pi0
Output: Blocking probability in Global Queue: BPq

counter ← 0; max ← 10; diff ← 1
BPq0 ← RASM (Ph0, Pw0, Pc0)
[Nh, Nw, Nc] ← PMM (Ph0, Pi0)
while diff ≥ 10−6 do

counter ← counter + 1
[Ph, Pi] ← VMPSM hot (BPq0, Nh)
Pw ← VMPSM warm (BPq0,Ph, Nw)
Pc ← VMPSM cold (BPq0,Ph,Pw, Nc)
[Nh, Nw, Nc] ← PMM (Ph, Pi)
BPq1 ← RASM (Ph, Pw, Pc)
diff ← |(BPq1 −BPq0) |
BPq0 ← BPq1
if counter = max then

break
end if

end while
if counter = max then

return -1
else

return BPq0
end if

4.5 Scalability and flexibility of integrated model

A cloud center may scale up or down in terms of global
queue size, number of PMs in each pool and the degree
of virtualization which are referred as design parameters.
Table 4 shows the relationship between the number of states
in each sub-model and their associated design parameters.

As can be seen from Table 4, the number of states in each
sub-model has a linear dependency on design parameters
which guarantees the scalability of the integrated model.
Note that VMPSMs are identical for all PMs in the same
pool. Therefore, we need only to solve three VMPSMs (i.e.,

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. X, NO. Y, 201Z 9

TABLE 4
Relationship between the size of sub-models and

design parameters.

Sub-Model Design Parameters No. of States: f(i)

RASM Lq f(Lq) = 3Lq + 1

VMPSM
f(m) = 3, if m=1

m f(m) = 6, if m=2
f(m) = 2f(m − 1) − f(m −
2) + 1, if m>2

PMSM
f(Nw, Nc, σ) =

Nw, Nc, σ Nw +Nc + 1 +

σ
∑σ
s=1(Nw +Nc − σ − s)

VMPSM hot, VMPSM warm and VMPSM cold) regard-
less of how many PMs are in the cloud center.

5 NUMERICAL VALIDATION

The resulting sub-models have been implemented and
solved using Maple 15 from Maplesoft, Inc. [35]. Under
different configurations and parameter settings, we obtain
two important performance metrics, namely, rejection prob-
ability of super-tasks (STs) and total response delay. We
show the effects of changing arrival rate, task service time,
number of PMs in each pool, number of VMs in each
PM and super-task size on the said performance indicators.
We also obtain the steady-state arrangement of pools (i.e.,
number of PMs in each pool) under above-mentioned
parameter setting as well as various pool checking rates.

Table 5 presents the range of individual parameter val-
ues. Also, in all subsequent discussions and diagrams, the
notation [h,w, c] will refer to a cloud center with h, w,
and c PMs (i.e., servers) in the hot, warm, and cold pool,
respectively.

Our first set of experiments investigates the effects of
task service time on rejection probability and total delay
imposed by the cloud center on super-tasks before getting
into service. In the first experiment, the results of which
are shown in Fig. 7, super-tasks have one task each, while
each PMs are permitted to run only two VMs; the super-
task arrival rate is constant at 1000 STs/hr. As can be seen
from Fig. 7(a), increasing the mean service time of indi-
vidual tasks leads to an almost linear increase in rejection
probability, while the increase of the system capacity (i.e.,
the number of PMs in each pool) reduces the rejection
probability. The latter effect is more pronounced for tasks
with longer service time, in particular for those with service
time over 80 minutes. At the same time, extending system
capacity has a negligible impact of rejection probability
for tasks shorter than 60 min. These results allow us to
identify a suitable arrangement for each service time, by
applying a trade-off between the performance gain and the
expenditure of required resources. Regarding total delay,
Fig. 7(b) shows that, for all pool arrangements, longer
service times will result in longer delays, since the actual
service time has a direct effect on the amount of waiting
time of queued super-tasks. This effect is more noticeable

TABLE 5
Range of parameters for numerical experiment.

Parameter Range Unit

Arrival rate 400 . . 1000 super-tasks/hour
Mean service time 40 . . 160 minute
No. of PMs in the hot pool 15 . . 30 N/A
No. of PMs in the warm pool 10 . . 20 N/A
No. of PMs in the cold pool 10 . . 15 N/A
No. of VMMs on each PM 2 N/A
No. of VMs on each PM 2 . . 10 N/A
Mean Look-up rate in the hot pool 625 searches/hour
Mean Look-up rate in the warm
and cold pool

825 searches/hour

Required time for a warm PM to
become hot

1 . . 5 minute

Required time for a cold PM to
become hot

5 . . 10 minute

VM deployment time on a hot PM 1 . . 5 minute
First VM deployment delay on a
warm PM

3 . . 10 minute

First VM deployment delay on a
cold PM

8 . . 15 minute

Size of global queue 50 . . 100 super-tasks
Queue size at PMs 2 . . 10 tasks

for ’weaker’ configurations such as [15, 10, 10] (i.e., 15
PMs in the hot pool, and warm and cold pools with 10
PMs each), as opposed to the ’stronger’ ones such as [30,
20, 15] where the delay increases is barely perceptible in
the observed range of mean service times.

System performance when the mean service time is fixed
at 100 minutes, but the super-task arrival rate (which, in this
case, is equal to the task arrival rate) is variable, is shown
in the diagrams in Fig. 8. Again, the rejection probability,
shown in Fig. 8(a), exhibits a sharp rise above a certain
value of (super-)task arrival rate, which is mainly due to
insufficient size of the global (input) queue. However, the
total delay, shown in Fig. 8(b), exhibits a sharp increase at
an even lower value of the (super-)task arrival rate; when
the rejection rate becomes non-negligible, the delay flattens
because the actual number of tasks serviced is decreasing.
Thus a simple increase in the size of the global queue is
ill advised, as it would reduce the rejection probability
at the expense of much higher delays. Consequently, if
a cloud provider observes unacceptable delay and/or task
rejection performance, a prudent course of action would be
to increase the system capacity (i.e., the number of PMs)
first, and extend the global queue only if the observed total
response time is well below the prescribed limit.

Our second set of experiments focuses on the impact of
super-task size on system performance. We have conducted
the calculations using both geometric and uniform distribu-
tion for the number of tasks in a super-task. In the former
case, we truncate the distribution at the value of maximum
super-task size (MSS) which corresponds to the maximum
number of VMs running on a single PM, so the probability

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. X, NO. Y, 201Z 10

(a) Super-task rejection probability.

(b) Total delay on a super-task.

Fig. 7. Performance metrics w.r.t service time: 2 VMMs
on each PM, 1 VM on each VMM, arrival rate = 1000
STs/hour, super-task-size = 1.

of having a super-task of size i is

pi =

{
(1− p)i−1p, if i < MSS
(1− p)MSS−1, if i = MSS

(17)

in which p is the parameter of geometric distribution. In the
latter case (i.e., for uniform distribution) the probability of
having a super-task of size i is

pi =
1

MSS
(18)

Regarding the value of MSS, it is worth noting that our
model does not impose any restriction whatsoever on the
degree of virtualization, but we still need a practical limit.
We are aware that a mainframe class computer can indeed
run tens, or perhaps even a hundred VMs that correspond
to a standard PC machine. However, a recent survey has
shown that 61% of the respondents run less than 10 VMs
per PM, while a mere 5% run more than 25 VMs on a

(a) Super-task rejection probability.

(b) Total delay on a super-task.

Fig. 8. Performance metrics w.r.t arrival rates: 2 VMMs
on each PM, 1 VM on each VMM, service time = 100
min, super-task-size = 1.

PM [36]. Moreover, VMs running on multi-core CPUs are
vulnerable to cache interference, as a VM running on one
core may degrade the performance of a VM running on
another core [37], [38]. Hence, we have assumed that each
PM runs two VMMs, each of which manages up to five
VMs, for a total of up to 10 VMs per PM.

From the diagrams in Fig. 9(a), we can see that an
increase in super-task size leads to a reduction of rejection
probability for both geometric and uniform distributions.
As for the total task delay, shown in Fig. 9(b), the curves
show a relatively flat peak, and then fall off rapidly. This
is due to the fact that 4500 tasks/hour is the aggregate
task arrival rate: as the mean super-task size increases,
the actual super-task arrival rate will decrease. In case of
geometric distribution (shown with lines), larger mean size
means lower variability of actual sizes, which makes the
resulting rejection probability and total delay lower. In fact,
in the boundary case where the average super-task size is

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. X, NO. Y, 201Z 11

Uniform

Distribuion
Geometric

Distribution
Pool Configuration

(a) Super-task rejection probability.

Uniform

Distribuion
Geometric

Distribution
Pool Configuration

(b) Total delay of a super-task.

Fig. 9. Performance metrics w.r.t super-task size: 2
VMMs, 5 VMs on each VMM, service time = 100 min,
arrival rate = 4500 tasks/hour.

10, all super-tasks have the same size, and the super-task
arrival rate is one-tenth of the aggregate rate. As the result,
each incoming super-task will obtain an entire PM which,
together with the corresponding reduction in super-task
arrival rate, guarantees a shorter waiting time in the global
queue and virtual elimination of blocking at that queue.
The processing delay becomes, then, the dominant part of
the total delay. We note that lower variability of super-task
size has been shown to increase the server utilization in
multi-server systems as well [39], [40].

Similar behavior can be observed in the case of uniform
distribution (shown with symbols), although the rejection
probability and total delay are somewhat higher than in
the case of geometric distribution. The rationale for this
behavior is that super-tasks of all sizes are equi-probable
under uniform distribution, whereas larger size super-tasks
(which are more likely to get rejected under the total
acceptance policy) have lower probability under geometric
distribution. Also, larger super-tasks release more capacity
when finished, which helps reduce the overall delay.

Our next experiment investigates the effects of pool

(a) Super-tasks rejection probability.

(b) Total delay on a super-task.

Fig. 10. Performance metrics w.r.t hot pool checking
rate: 2 VMs on each PM, 1 VM on each VMM, super-
task-size = 1, arrival rate = 1000 STs/hour, service time
= 100 min.

checking rate on the performance metrics. The pool check-
ing rate is the rate by which PMM searches for idle hot PMs
and switches them to the warm or cold pool, respectively.
Note that an idle hot PM would be first switched to
the warm pool, and later to the cold pool; however, if
there are more than σ PMs in the warm pool, it will be
immediately moved to the cold pool (i.e., shut down). In
previous experiments the mean pool checking rate was
fixed at 15 checks per hour. For obvious reasons, higher
pool checking rate will result in lower power consumption,
however a rate that is too high may bring about the ping-
pong effect. Namely, a recently shut-down PM may be
needed soon so PMM has to turn it on again, and frequent
back and forth movement of PMs may lead to longer delays
and higher rejection probability, not to mention reduced
hardware reliability.

In our experiments we have calculated the performance

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. X, NO. Y, 201Z 12

(a) Normalized Power consumption: arrival rate = 500 (per hour).

(b) Normalized Power consumption: service time = 60 min.

Fig. 11. Normalized power consumption: 2 VMMs on
each PM, 1 VM on each VMM, super-task-size = 1.

metrics for a number of different pool configurations. As
can be seen from Fig. 10, ’stronger’ configurations easily
outperform the ’weaker’ ones. When power consumption,
shown in Fig. 11, is also taken into account, the results
reveal that any given pool arrangement has a unique pool
check rate that results in optimum balance between power
consumption, on one side, and availability and throughput,
on the other side. From the results shown in Figs. 10 and 11,
it can be seen that for [15,10,10] arrangement the optimum
pool check rate is 30/hour, while for [18,12,11] the best
rate is 20/hr. For other configurations, a pool check rate of
10/hour can be considered as a good choice.

Using PMM, we also study the steady-state arrangement
of pools in a cloud center. In other words, we try to
identify the most probable arrangement of PMs in the pools
in a long run. We examine the model for vast variety
of parameter space and present the results for 3 distinct
settings (Table 6) in the Table 7.

In Table 7, the first column indicates the initial config-

TABLE 6
Three configuration settings for the experiment.

Setting
Design Parameters (A) (B) (C)

Mean arrival rate (hour) 500 600 450
Mean service time (min) 80 60 100
Mean pool check rate (hour) 60 30 50
Desired No. of warm PMs 10 15 20
No. of VM on each PM 2 2 10
No. of VMM on each PM 2 2 2
Mean super-task size 1 2 4
Global queue size 50 75 100

TABLE 7
Steady-state configuration of pools.

Initial Steady-State Configurations
Configuration Setting (A) Setting (B) Setting (C)
[15, 10, 10] [33, 2, 0] [34, 1, 0] [34, 1, 0]

[18, 12, 11] [38, 2, 1] [40, 0, 1] [39, 1, 1]

[21, 14, 12] [40, 6, 1] [45, 0, 2] [41,3,3]
[24, 16, 13] [41,5,7] [48, 5, 0] [39, 2, 12]

[27, 18, 14] [40, 2, 17] [51, 8, 0] [39, 10, 10]

[30, 20, 15] [38, 1, 26] [52,5,8] [39, 9, 17]

uration of pools by which we start the experiment. Then
under 3 different settings and for 6 pool configurations the
steady-state arrangements are identified (the arrangements
that are in bold face). Under such arrangement the rejec-
tion probability is zero and the cloud center imposes the
minimum delay on its users’ requests. For instance, for
setting (A) the best arrangement is [41,5,7]. Such steady-
state configuration suggests a cloud provider to arrange its
server pool accordingly in order for achieving the highest
user satisfaction. However, if some amount of rejection
or delay is tolerable, our experiment could suggest other
configurations that can balance cloud providers’ interests
such as rejection probability, response delay, power con-
sumption, and etc.

We also quantify the effects of PMM on power consump-
tion for different arrival rates as well as service rates. The
normalized power consumption can be calculated as

Pow([Nh, Nw, Nc]) =
Nh
Nt

+
Nw
Nt
∗ ψ (19)

in which Nt = Nh + Nw + Nc and ψ is the ratio of
power consumption of a warm PM to a hot PM (set to
60% according to [41], [42]). Therefore, when all PMs
are busy the normalized power consumption of the cloud
center is 1. As can be seen in the Fig. 11, in case
of weaker configurations (i.e., [15,10,10] and [18,12,11]),
PMM cannot achieve significant power saving since all of
PMs are in hot mode most of the time. However, in case of
larger configurations, PMM can achieve substantial power
savings, even up to 50%, by turning down the idle PMs
while still maintaining an acceptable level of QoS.

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. X, NO. Y, 201Z 13

6 CONCLUSIONS

In this paper, we have developed an interacting analytical
model that captures important aspects including resource
assigning process, virtual machine deployment, pool man-
agement and power consumption of nowadays cloud cen-
ters. The performance model can assist cloud providers to
predict the expected servicing delay, task rejection probabil-
ity, steady-state arrangement of server pools and power con-
sumption. We carried out extensive numerical experiments
to study the effects of various parameters such as arrival
rate of super-tasks, task service time, virtualization degree,
super-task size and pool check rate on the task rejection
probability, response time and normalized power consump-
tion. The behavior of cloud center for given configurations
has been characterized in order to facilitate the capacity
planning, SLA analysis, cloud economic analysis and trade
offs by cloud service providers. Using the proposed pool
management model, the most appropriate arrangement of
server pools and the amount of required electricity power
can be identified in advance for anticipated arrival process
and super-task characteristics.

In future work, we plan to design an availability model
on top of our performance model in order to fully sup-
port different what-if analysis (e.g., SLA analysis, trade-
offs, optimization) during design, implementation, testing
and operational phases of a cloud service and, possibly,
suggesting an architecture for a software tool to integrate
proposed models and algorithms.

REFERENCES

[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A
break in the clouds: towards a cloud definition,” ACM SIGCOMM
Computer Communication Review, vol. 39, no. 1, 2009.

[2] An amazon.com company, “Amazon Elastic Compute Cloud, Ama-
zon EC2,” Website, Last accessed Oct. 2012, http://aws.amazon.com/
ec2.

[3] IBM, “IBM Cloud Computing,” Website, Last accessed July 2012,
http://www.ibm.com/ibm/cloud/.

[4] M. Martinello, M. Kaniche, and K. Kanoun, “Web service
availability–impact of error recovery and traffic model,” Reliability
Engineering System Safety, vol. 89, no. 1, p. 616, 2005.

[5] N. Sato and K. S. Trivedi, “Stochastic modeling of composite web
services for closed-form analysis of their performance and reliability
bottlenecks,” Service Oriented Computing ICSOC 2007, pp. 107–
118, 2007.

[6] S. Ferretti, V. Ghini, F. Panzieri, M. Pellegrini, and E. Turrini, “QoS-
aware clouds,” in 2010 IEEE 3rd International Conference on Cloud
Computing (CLOUD), Jul. 2010, pp. 321–328.

[7] H. Khazaei, J. Mišić, and V. B. Mišić, “Performance analysis of
cloud computing centers using M/G/m/m+r queueing systems,”
IEEE Transactions on Parallel and Distributed Systems, vol. 23,
no. 5, p. 1, 2012.

[8] F. Longo, R. Ghosh, V. K. Naik, and K. S. Trivedi, “A scalable
availability model for infrastructure-as-a-service cloud,” Dependable
Systems and Networks, International Conference on, pp. 335–346,
2011.

[9] R. Ghosh, K. S. Trivedi, V. K. Naik, and D. S. Kim, “End-to-
end performability analysis for infrastructure-as-a-service cloud: An
interacting stochastic models approach,” in Proceedings of the 2010
IEEE 16th Pacific Rim International Symposium on Dependable
Computing, 2010, pp. 125–132.

[10] H. Khazaei, J. Mišić, and V. B. Mišić, “Performance analysis of
cloud centers under burst arrivals and total rejection policy,” in
Global Telecommunications Conference (GLOBECOM 2011), 2011
IEEE, Dec. 2011, pp. 1–6.

[11] A. Iosup, N. Yigitbasi, and D. Epema, “On the performance variabil-
ity of production cloud services,” in 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, May. 2011, pp.
104–113.

[12] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “Performance Analysis of Cloud Computing Services for
Many-Tasks Scientific Computing,” IEEE Transactions on Parallel
and Distributed Systems, vol. 22, no. 6, pp. 931–945, Jun. 2011.

[13] L. Youseff, R. Wolski, B. Gorda, and R. Krintz, “Paravirtualization
for hpc systems,” in In Proc. Workshop on Xen in High-Performance
Cluster and Grid Computing. Springer, 2006, pp. 474–486.

[14] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good,
“The cost of doing science on the cloud: The montage example,”
2008 SC International Conference for High Performance Computing
Networking Storage and Analysis, vol. C, no. Nov., pp. 1–12, 2008.

[15] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel, “Ama-
zon S3 for science grids: a viable solution?” Proceedings of the 2008
international workshop on Dataaware distributed computing DADC
08, pp. 55–64, 2008.

[16] E. Walker, “Benchmarking Amazon EC2 for high-performance sci-
entific computing,” LOGIN, vol. 33, no. 5, pp. 18–23, 2008.

[17] L. Wang, J. Zhan, W. Shi, Y. Liang, and L. Yuan, “In cloud, do
mtc or htc service providers benefit from the economies of scale?”
Proceedings of the 2nd Workshop on ManyTask Computing on Grids
and Supercomputers MTAGS 09, vol. 2, pp. 1–10, 2010.

[18] S. Saini, D. Talcott, D. Jespersen, J. Djomehri, H. Jin, and R. Biswas,
“Scientific application-based performance comparison of sgi altix
4700, ibm power5+, and sgi ice 8200 supercomputers,” 2008 SC
International Conference for High Performance Computing Network-
ing Storage and Analysis, pp. 1–12, Dec. 2008.

[19] S. Alam, R. Barrett, M. Bast, M. R. Fahey, J. Kuehn, C. McCurdy,
J. Rogers, P. Roth, R. Sankaran, and J. S. Vetter, “Early evaluation
of IBM BlueGene,” 2008 SC International Conference for High
Performance Computing Networking Storage and Analysis, pp. 1–
12, May 2008.

[20] N. Yigitbasi, A. Iosup, D. Epema, and S. Ostermann, “C-meter:
A framework for performance analysis of computing clouds,” in
CCGRID09: Proceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, 2009, pp. 472–477.

[21] K. Xiong and H. Perros, “Service performance and analysis in cloud
computing,” in IEEE 2009 World Conference on Services, 2009, pp.
693–700.

[22] B. Yang, F. Tan, Y. Dai, and S. Guo, “Performance evaluation of
cloud service considering fault recovery,” in First Int’l Conference
on Cloud Computing (CloudCom) 2009, Dec. 2009, pp. 571–576.

[23] H. Khazaei, J. Mišić, and V. B. Mišić, “Modeling of cloud computing
centers using M/G/m queues,” in The First International Workshop
on Data Center Performance, Mar. 2011.

[24] ——, “Performance of cloud centers with high degree of virtualiza-
tion under batch task arrivals,” IEEE Transactions on Parallel and
Distributed Systems, vol. 99, no. PrePrints, p. 1, 2012.

[25] R. Ghosh, F. Longo, V. K. Naik, and K. S. Trivedi, “Quantifying
resiliency of IaaS cloud,” IEEE Symposium on Reliable Distributed
Systems, vol. 0, pp. 343–347, 2010.

[26] H. Qian, D. Medhi, and K. S. Trivedi, “A hierarchical model to
evaluate quality of experience of online services hosted by cloud
computing,” in Integrated Network Management (IM), IFIP/IEEE
International Symposium on, May. 2011, pp. 105–112.

[27] H. Khazaei, J. Mišić, and V. B. Mišić;, “A fine-grained performance
model of cloud computing centers,” IEEE Transactions on Parallel
and Distributed Systems, vol. 99, no. PrePrints, p. 1, 2012.

[28] H. Takagi, Queueing Analysis. North-Holland, 1993, vol. 2: Finite
Systems.

[29] G. Grimmett and D. Stirzaker, Probability and Random Processes,
3rd ed. Oxford University Press, Jul 2010.

[30] D. P. Heyman and M. J. Sobel, Stochastic Models in Operations
Research. Dover, 2004, vol. 1.

[31] H. Takagi, Queueing Analysis. North-Holland, 1991, vol. 1:
Vacation and Priority Systems.

[32] L. Kleinrock, Queueing Systems, Volume 1, Theory. Wiley-
Interscience, 1975.

[33] K. S. Trivedi, Probability and Statistics with Reliability, Queuing
and Computer Science Applications, 2nd ed. Wiley, 2001.

[34] V. Mainkar and K. S. Trivedi, “Sufficient conditions for existence
of a fixed point in stochastic reward net-based iterative models,”
Software Engineering, IEEE Transactions on, vol. 22, no. 9, pp.
640–653, Sep. 1996.

IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS , VOL. X, NO. Y, 201Z 14

[35] Maplesoft, Inc., “Maple 15,” Website, Last accessed Mar. 2011, http:
//www.maplesoft.com.

[36] SearchDataCenter.com, “The data center purchasing intentions sur-
vey report,” Special Report, 2008, http://searchdatacenter.techtarget.
com.

[37] G. Somani and S. Chaudhary, “Application performance isolation in
virtualization,” in IEEE International Conference on Cloud Comput-
ing, CLOUD ’09., Sep. 2009, pp. 41–48.

[38] K. Ye, X. Jiang, D. Ye, and D. Huang, “Two optimization mecha-
nisms to improve the isolation property of server consolidation in
virtualized multi-core server,” in 12th IEEE International Conference
on High Performance Computing and Communications (HPCC),
Sep. 2010, pp. 281–288.

[39] S. C. Borst, “Optimal probabilistic allocation of customer types to
servers,” SIGMETRICS Perform. Eval. Rev., vol. 23, pp. 116–125,
May. 1995.

[40] J. Sethuraman and M. S. Squillante, “Optimal stochastic scheduling
in multiclass parallel queues,” SIGMETRICS Perform. Eval. Rev.,
vol. 27, pp. 93–102, May. 1999.

[41] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap: eliminating
server idle power,” SIGPLAN Not., vol. 44, no. 3, pp. 205–216, Mar.
2009.

[42] A. Gandhi, V. Gupta, M. Harchol-Balter, and M. A. Kozuch,
“Optimality analysis of energy-performance trade-off for server farm
management,” Performance Evaluation, vol. 67, no. 11, pp. 1155–
1171, 2010.

Hamzeh Khazaei received his B.S. (2004)
and M.S. (2008) degrees in computer sci-
ence from Amirkabir University of Tech-
nology (Tehran Polytechnic), Iran. Currently
he is a Ph.D candidate in Department of
Computer Science, University of Manitoba,
Canada. His research interests include cloud
computing, modeling and performance eval-
uation of computing systems and queuing
theory.

Jelena Mišić (M91, SM08) received her PhD
degree in Computer Engineering from Uni-
versity of Belgrade, Serbia, in 1993. She is
currently Professor of Computer Science at
the Ryerson University, Toronto, Canada. Her
current research interests include wireless
networks and security in wireless networks.
She is a member of IEEE and ACM.

Vojislav B. Mišić received his PhD in Com-
puter Science from University of Belgrade,
Serbia, in 1993. He is currently Professor of
Computer Science at Ryerson University in
Toronto, Ontario, Canada. His research inter-
ests include wireless networks and systems
and software engineering.

Saeed Rashwand received his M.Sc. de-
gree in Computer Science from Amirkabir
University of Technology, Iran in 2008. He is
currently a Ph.D. candidate in the department
of Computer Science, University of Manitoba,
Canada. His current research interests in-
clude performance evaluation, design, and
implementation of wireless body area net-
works, wireless sensor networks, mobile ad-
hoc networks, and wireless local area net-
works as well as cloud computing.

