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Summary

Spectrum decision – i.e., the selection of a channel for the next hop – is one of the most important factors that
affect the performance of a channel-hopping cognitive network. In this paper, we compare the performance of
a number of channel selection algorithms through the probability of collisions with primary user transmissions.
The results indicate that a simple histogram-based selection algorithm performs the best, except in the somewhat
unrealistic scenario where primary users are homogeneous with respect to mean period and mean duty cycle of
their channel activity, in which case selecting the next-hop channel among those that have most recently turned
idle offers the best performance. Furthermore, histogram-based selection is shown to be quite resilient to errors
inherent to channel sensing, and is thus a primary candidate for a wide range of applications of channel-hopping
cognitive networks. Copyright c⃝ 0000 John Wiley & Sons, Ltd.
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1. Introduction

Opportunistic or cognitive spectrum access often relies
on channel hopping [2]. However, predefined hopping
sequences, be they deterministic such as the one used
in the so-called dynamic hopping communities [3]
or pseudo-random such as the one used in Bluetooth
[4, 5], are incapable of providing uninterrupted piconet
operation under unpredictable activity of primary
users [6]. Instead, the hopping sequence must be
dynamically determined by choosing the channels
with best transmission parameters and free from
interference by primary users.

∗This paper is a greatly expanded and revised version of the paper
‘On the Selection of Working Channels in a Channel-Hopping
Cognitive PAN’ [1] presented at the IWCMC 2013 conference, held
in Cagliari, Sardinia, Italy, in July 2013.

In this paper we present a comparative analysis
of a number of techniques for working channel
selection, using blind random selection as the
convenient reference point. We use the transmission
tax-based protocol from [7, 8] as the environment
in which to implement these techniques, on account
of its availability of superframe-based structure with
integrated sensing protocol and adaptive channel
hopping.

One of the techniques for working channel selection
is based on selecting one among the channels that
have most recently become free – preferably, but
not necessarily, within the last superframe. The
other techniques use statistical approaches – in one
case a histogram, and two different kernel-based
estimators in another two cases – to estimate the
probability that individual channels will remain idle
for the duration of the next superframe. In both
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cases, the required data structures are created and
dynamically maintained by the piconet coordinator
from sensing data regularly reported by individual
nodes in the piconet. The channel with the highest
probability is then selected as the next working
channel (i.e., the working channel for the next hop).
A simple random selection among channels that are
currently idle is used as the benchmark against which
other algorithms are measured. The most important
performance indicator is the probability of collisions
with primary user activity: namely, if the piconet hops
on to a channel which is not idle, or if a primary user
begins transmission on the current working channel.
These two cases will be referred to as type 1 and type
2 collisions, respectively.

As will be seen, histogram-based estimation offers
best results except in the somewhat impractical case
when primary user activity is homogeneous with
respect to mean activity period and mean duty cycle
(i.e., the ratio of active period and the sum of
active and inactive periods) in which case selecting
the channel most recently turned idle gives best
results. The ability to deal with heterogeneous primary
user activity patterns and a remarkable resilience to
sensing errors, as shown below, make histogram-based
estimation the prime candidate for use in cognitive
networks with a wide range of network and traffic
parameters.

The rest of the paper is organized as follows.
In Section 2 we present a brief overview of
existing work on working channel selection. Section 3
outlines the operation of the transmission tax-based
MAC protocol. Section 4 presents the working
channel selection protocols and discusses their relative
advantages. Section 5 presents the performance
evaluation of the protocols, and Section 6 concludes
the work.

2. Related work on spectrum decision

Selection of the working channel or, as it is often
called, spectrum decision, has been identified as a
crucial piece of functionality in the operation of
cognitive networks [2]. While the spectrum decision
problem has received some attention in the existing
literature, its level of ‘maturity’ is well below that
of the other processes such as spectrum sensing or
spectrum access [9].

In cases where primary user activity patterns are
known, spectrum decision process can be designed
to make use of those patterns. In case of cognitive
communications that use TV White Space [10, 11, 12],

such information might be added to the extensive
database of existing TV transmitters. Note that this
addition is not defined in DARPA’s documents – but
it is not forbidden either.

Unfortunately, the cases where primary user activity
is unpredictable are much more frequent in practice,
and decisions have to be made on the basis of some
statistical model of spectrum usage [6]. A prerequisite
for statistically meaningful decisions is a certain
degree of stationarity of primary user activity [13],
which may or may not hold in a given scenario.

A formal analysis of spectrum availability in the
context of ISM band where primary users are 802.11
transmitters has been proposed in [14]. This model
is then used to develop an access strategy in which
a channel is sensed by a secondary user and, if
idle, utilized with a specified probability [15]. This
approach, however, requires that secondary users are
well synchronized, which is not a straightforward task.
More importantly though, the approach holds for two
nodes only and may not be easy to extend to a piconet
with several such nodes.

A stochastic extension of the above approach that
avoids the need for strict synchronization of secondary
nodes has been described in [13].

Spectral estimation is the foundation of the
approach described in [16], where distinction is
made between white and gray zones in the scanned
spectrum: the former contain noise only, while the
latter contain signals with distinct idle periods.
Separating the two, however, is noted to be a difficult
task.

Some authors have also described game-theoretic
approaches [17], but in the context of cooperation
between primary and secondary users. Again, this
cooperation is infeasible or, at least, impractical in
most cases.

From this brief overview, some important observa-
tions can be made. First, spectrum decision – i.e., the
selection of the best available channel – necessitates
frequent and accurate spectrum sensing at all times
[18]. Sensing may be performed in centralized or
distributed fashion, but the decision about the channel
to use for the next hop must be made in a centralized
manner. Once made, the decision must be announced
to all the nodes in the piconet in a timely manner, e.g.,
through a beacon frame that is periodically broadcast.

Second, if spectrum decision is to be guided by a
statistical model of primary user spectrum usage, such
model must be built through some kind of learning
process based on accurate sensing of primary user
activity in the working band. However, the learning
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process must be capable of dynamically adapting to
patterns of primary user activity. If these patterns
exhibit nonstationarity (which is to be expected
in practice), few, if any, of the aforementioned
approaches are equipped to adapt to such changes
in a satisfactory manner; instead, their respective
algorithms need to be restarted, which would render
them rather crude and, possibly, inapplicable in
practice.

These two observations form the foundation for
our approach to spectrum selection, which will be
described in the context of the transmission tax-based
MAC protocol explained in the following.

3. Transmission tax-based MAC protocol

A number of nodes with cognitive capabilities form
a cognitive piconet through a so-called rendezvous
procedure [19], the details of which are beyond
the scope of this paper. All nodes are assumed to
be capable of half-duplex operation, and any node
with sufficient computational capability can act as a
coordinator, similar to Bluetooth [5].

The time in each superframe is divided into
the following components: beacon frame, data
exchange sub-frame, reporting sub-frame in which
sensing results are sent back to the coordinator,
reservation sub-frame in which bandwidth requests
and other administrative frames are sent, and trailing
beacon frame. The leading beacon allows nodes to
synchronize with the beginning of the superframe on a
new channel. The trailing beacon contains bandwidth
allocation decisions, information about nodes joining
the piconet or leaving it, network allocation vector
outlining the boundaries of sub-frames in the next
superframe, and the announcements about the next-
hop channel – i.e., the channel to be used for the next
superframe.

The superframe lasts for a fixed or variable number
of fixed-duration time slots, and each superframe
may take place on a different channel according
to the hopping sequence dynamically selected by
the coordinator. Performance implications of adaptive
superframe duration in the transmission tax-based
MAC protocol were discussed in [20].

The structure of the superframe is schematically
shown in Fig. 1. Successive superframes are separates
by a guard interval of sufficient duration which allows
all nodes to hop to the next channel.

The label ‘transmission tax’ stems from the fact
that a node, once it request and receive bandwidth
allocation to transmit a packet – and then successfully

sync beacon

sensing 
reports

b/w requests, 
admin

channel x

trailing 
beacon

hop

data exchange – allocations announced
in the trailing beacon

guard time

time

channel y

Fig. 1. Structure of the piconet superframe.

transmits it – is obliged to perform the sensing duty
for a specified number of superframes. It reports
the results in each of the superframes during which
it performs the sensing duty. Thus transmission is
effectively paid for by sensing; by adjusting the
amount of transmission tax (i.e., the number of
superframes for sensing per transmitted packet or
packet burst), the coordinator is able to maintain a
steady influx of accurate sensing information in a
timely fashion [21].

An important component of the sensing report is the
information about the time of sensing. In the simplest
case, the coordinator will just record the superframe
in which it received the report; alternatively, the node
may report (and the coordinator will record) the
nearest time slot in which the sensing actually took
place. The former approach suffices for all of the
algorithms described below.

Finally, we note that nodes about to receive packets
can temporarily suspend the sensing during that
superframe, and resume it in the next one. In other
words, sensing is preempted by packet reception. In
this manner, reception is not actually taxed, unlike
transmission. However, the coordinator must ensure
that a node can request bandwidth for a new packet
only upon completing the sensing duty imposed on
account of its previous transmission.

4. Channel selection algorithms

Let us now describe spectrum decision algorithms in
more detail. We assume that ordinary nodes perform
sensing for a number of channels in each of the
superframes which they spend doing sensing. We
also assume that sensing reports are truthful; while
reporting may be blocked by noise and interference,
we can easily account for this through reducing the
number of sensing reports per each superframe. More
details on the impact of the number of sensing reports
will be presented in Section 5.3 below. (Accuracy
of cooperative sensing at the MAC level has been
investigated in detail in [24].)

Sensing results are collected by the coordinator
which maintains a map of busy and idle channels, as
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well as the last time at which the channel has turned
idle or busy, and other relevant information necessary
for the working channel selection algorithms outlined
below.

Our main performance indicators are the probability
of collisions with the transmission from a primary
user. Fewer collisions mean more usable superframes
and, consequently, higher throughput. (More details
on improving throughput in the cognitive piconet with
transmission tax-based MAC protocol can be found in
[21, 20].) Two types of collisions are possible:

• Type 1 collision occurs when the coordinator
selects a channel it thinks is idle, but is
in fact busy. Collisions of this type may
occur if (a) the channel selection algorithm
erroneously select a busy channel, or (b) the
selected channel becomes busy in the time
interval between sensing and the beginning of
the next superframe. The probability of this
event depends, then, on the performance of
the channel selection algorithm but also on
the accuracy of the sensing process and the
dynamics of primary user activity.

• Type 2 collision occurs when the channel is
idle at the beginning of the next superframe
but becomes busy during that superframe.
The probability of this event depends on the
dynamics of primary user activity.

In case of a collision, the piconet must undertake a
recovery process, i.e., it must try to continue operation
on another channel [22]; should that fail, the piconet
has to undergo a full piconet formation process or
rendezvous [23].

4.1. Random selection among idle channels

The yardstick against which we will measure the
performance of both algorithms is the simple random
selection algorithm. In this approach, the next working
channel is selected through random choice from the
set of channels that are currently assumed to be idle
according to the information in the channel map. It
is worth noting that the set of idle channels may be
empty. This may be the actual state of the medium,
or may be just the result of the inertia of the sensing
process and the resulting errors [18]. In this case, the
piconet may attempt recovery, or simply decide to
repeat the piconet formation process; detailed analysis
of both processes is beyond the scope of the present
paper.

4.2. Selecting the most recently idle channel

This algorithm consists of selecting an idle channel
that has most recently turned idle. The underlying
assumption is that the channel that has most recently
turned idle has the highest probability of remaining
idle during the next superframe. If there are several
such channels (a scenario which is more likely if
the coordinator just records the superframe, but still
possible even at finer time granularity), the coordinator
will choose one of the channels at random.

The other algorithms attempt to select the channel
which is most likely to remain idle throughout the
next superframe. Selection must rely on estimated
probability that the idle channels remain idle for the
specified time interval. As the exact beginning of
channel activity is not known, and neither is the exact
probability distribution of channel active and idle
times, we must use non-parametric estimation [25].

4.3. Selecting the most likely idle channel using
histogram-based estimation

The second algorithm attempts to estimate the
probability that the channels which are currently idle
will remain idle throughout the next superframe.
Since the coordinator can’t know the exact probability
distribution of channel idle times, non-parametric
estimation is a preferred approach [26]. The simplest
solution is based on a histogram of the durations of
idle periods for each channel. The width of each bin is
set to the shortest possible duration of the superframe,
h = sfm, while the number of bins is calculated as
the longest channel idle time divided by sfm. For
each recorded idle-to-busy transition on a channel, the
coordinator calculates ti, the duration of the idle time
on the channel, and increments Ni(j), i.e., the value in
bin j of the histogram for channel i (ti/h− 1 ≤ j <
ti/h). In this manner, the values in the bins measure
the probability that the channel will remain idle for the
time interval that corresponds to the appropriate bin.

The next-hop channel is selected as follows. For
each channel i that is currently idle, the coordinator
calculates the index k of the bin that corresponds to
the time interval from the last time when the channel
has turned idle until the end of the next superframe
as ki = (τi + sf )/h. Note that different channels may
have turned idle at different times and their respective
bins will differ. The (estimated) probability for the
given channel is then obtained as

f̂i =
Ni(ki)∑
k Ni(k)

(1)
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since the histogram values are not real probabilities
– their sum is not one – and must be normalized to
obtain actual probabilities. The coordinator then finds
the next-hop channel C as the one with the maximum
estimated probability in the bin ki:

C = arg max
i

{f̂i} (2)

As before, in (the much less likely) case there
are several such channels, the decision is made by
random choice. Note that the channel selection will
actually depend on the calculated duration of the next
superframe, unlike in algorithm 1.

The accuracy of histogram-based estimation
depends on many factors, including in no small
measure the bin width h. Moreover, bins are not
necessarily centered on the required value of channel
idle time [25] and some bins may even be empty
as the histogram is not a continuous function of the
duration of channel idle time.

Given that the coordinator can’t know the longest
duration of channel idle time, the number of bins must
be determined on the basis of observations, preferably
many of them. The coordinator is still obliged to
make decisions about the next-hop channel while these
observations are being collected.

Also, if channel activity exhibits non-stationary
behavior, older observations become progressively
less relevant but they are still kept in the histogram,
even though greater weight should be given to the
more recent ones. This problem may be alleviated
by restricting the number of observations from which
the histogram is constructed. The required number n
may be found through a tradeoff between accuracy
(which, ideally, increases with n) and storage and
computational requirements on the coordinator node
(as n values need to be stored for each channel, and
updated with each status change on the channel).

4.4. Selecting the most likely idle channel using
kernel-based density estimation

Another approach to non-parametric estimation is the
so-called kernel density estimation [25, 26]. In this
scheme, for a number of observations tj , i = 1 . . n of
a random variable, the estimated pdf f at the point t
can be obtained as

f̂(t) =
1

n

n∑
j=1

Kh(t− tj) (3)

where K() is a so-called kernel, a standard-
ized nonnegative weighting function that satisfies

the conditions
∫
K(z)dz = 1,

∫
zK(z)dz = 0, and∫

z2K(z)dz = κ2 < +∞ [25].
Similar to the case of histogram-based estimation,

the coordinator first calculates the time interval from
the last time when the channel has turned idle until the
end of the next superframe as t = τ + sf , calculates
the pdf estimate using (3) and chooses the next-hop
channel C by as the one with the maximum estimated
probability :

C = arg max
i

{f̂i} (4)

Kernel-based estimation can be tailored to the
characteristics of the process being observed and
the desired accuracy by adjusting the number of
observations n and the so called bandwidth or
smoothing parameter h which determines the amount
of smoothing introduced by the kernel function

Kh(z) :=
1

h
K

( z

h

)
. (5)

A number of kernels exist which differ in the
choice of the function K as well as in the parameter
h. Bandwidth selection is an important topic of its
own and many algorithms have been described in the
literature [27]. In our model we have set the bandwidth
to the shortest superframe duration, h = sfm; besides
simplicity, this choice has the added advantage of
allowing direct comparisons with the histogram-based
approach where bin width of equal size is used.

Estimation accuracy is measured by the mean
integrated square error or efficiency, defined as MISE
(f̂) = E

[∫
(f̂(x)− f(x))2dx

]
. It was shown [28]

that the most efficient kernel – the one which achieves
the lowest MISE for a given number of observations n
– is the Epanechnikov kernel [29] of the form

Kepa(t) =

{
3
4

(
1− 1

5 t
2
)
/
√
5, |t| ≤

√
5

0, otherwise
(6)

Another very popular kernel is the Gaussian kernel
[28] of the form

Kbw(t) =

{
1√
2π

e−
1
2 t

2

, |t| ≤ 1

0, otherwise
(7)

which achieves about 95.1% efficiency compared to
the Epanechnikov kernel. The two kernels are shown
in Fig. 2 in the range of independent variable t from -3
to 3, inclusive.
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Fig. 2. Epanechnikov and Gaussian kernels.

5. Experimental evaluation

To evaluate the performance impact of different
channel selection algorithms, we have built a simulator
of the cognitive piconet using the object-oriented, Petri
net-based simulation engine Artifex by RSoftDesign,
Inc. [30]. The simulator implements the transmission
tax-based MAC protocol with integrated sensing
and the five channel selection algorithms: random
selection, selection of the most recently idle channel,
and selection of the channel most likely to remain
idle using histogram- and two kernel-based estimation
algorithms. The main performance indicators are the
probability of type 1 and type 2 collisions, as defined
above.

Unless otherwise note, the following parameter
values were used:

• The piconet has 15 nodes and the coordinator.
• The working set of channels contains 15

channels.
• Superframe duration was fixed at 100 time units,

15 of which were set aside for administrative
superframes.

• Each channel contains an independent primary
source with random activity with Erlang-
distributed ON (busy) and OFF (idle) intervals.
The mean ratio of active period vs. total period
(i.e., activity factor or duty cycle) is 0.5, while
the mean period of primary user activity is 1000
time units.

• Each node has a traffic generator which
generates Poisson-distributed single packet
traffic at a rate of 0.002 packets per node per
time unit, with each packet lasting 10 time units.

These values correspond to a loaded piconet
operating at the offered load of about 15 · 0.002 · 10 ≈
0.3, which is a non-negligible value, but still light
enough to ensure that the network operates well below
saturation.

Both histogram- and kernel-based algorithms use a
list of n = 100 latest observations per channel each,
with each new observation simply replacing the oldest
one in the list. Both are, thus, well equipped to
deal with nonstationarity in primary user activity. The
former organizes the observations into a total of nb =
21 bins of width hh = sfm = 50 time units, while
the latter use Epanechnikov and Gaussian kernels with
bandwidth hkde = sfm.

5.1. Homogeneous primary users

In our first experiment, we investigated the perfor-
mance of the algorithms with Erlang-distributed busy
and idle periods of primary sources. As all primary
sources use the same probability distribution, we refer
to this scenario as homogeneous. The results are
shown in Fig. 3 for variable number of channels (top
row) and primary user activity factor (bottom row); to
facilitate comparison, both collision probabilities are
shown using the same vertical scale.

As can be seen in Figs. 3(a) and 3(a), both collision
probabilities are rather high, which may be attributed
to high primary user activity factor of γ = 0.5 and
Erlang-distributed idle and active intervals. As the
number of channels increases, only the selection of
most recently idle channel offers reduced probability
of type 1 collisions on account of higher number of
channels which increases the number of opportunities.
All other algorithms exhibit either steady or slowly
increasing probability of type 1 collisions, which can
be explained as follows. Namely, more channels does
mean more opportunities but it also means that sensing
error will be higher because the number of nodes
that perform sensing is constant. As the result, not
all opportunities will be recognized as such by the
coordinator, and the probability of type 1 collisions
remains steady or slowly increases. However, once
an idle channel is selected, the probability of type 2
collision depends only on the dynamics of primary
user activity, which is why it is mostly independent
of the number of channels.

Similar observations may be made for the diagrams
in Figs. 3(c) and 3(d) where the primary user activity
factor, i.e., the ratio between the mean active period
and the mean total period, is varied. Increasing activity
factor translates into shorter idle periods, and working
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(b) Probability of type 2 collisions under variable number of
primary channels.
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(c) Probability of type 1 collisions under variable primary user
activity factor.
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(d) Probability of type 2 collisions under variable primary user
activity factor.
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(e) Probability of type 1 collisions, variable Erlang k.
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(f) Probability of type 2 collisions, variable Erlang k.

Fig. 3. Performance of working channel selection algorithms under homogeneous primary user activity. Mean period of primary
user activity is 1000, primary user activity factor is 0.5, active and idle periods are Erlang-distributed with k = 3, and the number

of channels is 15, unless explicitly designated as variable.
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(a) Probability of type 1 collisions under randomly chosen
primary user activity factor.
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(b) Probability of type 2 collisions under randomly chosen
primary user activity factor.
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(c) Probability of type 1 collisions under randomly chosen
primary user activity period and activity factor.
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(d) Probability of type 2 collisions under randomly chosen
primary user activity period and activity factor.

Fig. 4. Performance of working channel selection algorithms under heterogeneous primary user activity. Mean period of
primary user activity is 1000, active and idle periods are Erlang-distributed with k = 3, and the number of channels is 15,

unless explicitly designated as variable.

channel selection is inevitably degraded. Again, best
results are obtained by the selection of most recently
idle channel.

These observations are corroborated by the dia-
grams in Figs. 3(e) and 3(f). For Erlang k = 1
which corresponds to exponential and, consequently,
memoryless distribution of primary user active and
idle periods, all algorithms perform about the same.
However, when k increases, the performance curves
for different algorithms begin to differ; again, the
only one which shows actual reduction in collision
probability is the selection of most recently idle
channels.

The deterioration of performance for histogram-
and kernel-based algorithms under increasing Erlang

k may be explained by the non-monotonic shape of

the probability density function for Erlang distribution

with k > 1. Namely, the presence of the peak may

‘trick’ those algorithms to give preference to a channel

which is already idle for a time longer than the

distribution peak. As the result, while the algorithms

essentially perform correctly, the probability of type

1 collision – i.e., of hopping to a busy channel –

still increases. On the other hand, selection of most

recently idle channel does not suffer from this effect as

it does not consider the shape of the probability density

function.
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5.2. Heterogeneous primary users

In our second experiment, we have introduced
heterogeneity through randomly varying the primary
user activity factor in the range of 0.1 to 0.9; the
actual value was changed periodically throughout
the simulation runs. The resulting diagram for the
probability of type 1 collisions is shown in Figs. 4(a)
and 4(c), while those for the probability of type 2
collisions are shown in Figs. 4(b) and 4(d). The
relative performance of algorithms is now rather
different. In the first case, the differences between
them are much smaller, although histogram-based
estimation appears to be the best, esp. when the
number of channels is high, closely followed by the
selection of most recently idle channel.

We have also ran the simulations with both primary
user activity period and primary user activity factor
randomly chosen; the corresponding range of values
was 500 to 3000 unit slots and 0.1. to 0.9, respectively.
The results are shown in Figs. 4(c) and 4(d). As can
be seen, histogram-based evaluation is clearly superior
to other algorithms. This can be explained as follows.
As the coordinator maintains a separate histogram
for each channel, random perturbations are efficiently
accommodated and selection of the channel most
likely to be idle remains accurate. Limiting the number
of observations used to construct the histogram helps
maintain accuracy when the parameters of primary
user activity change. Selection of most recently idle
channel, on the other hand, does not account for the
differences in the duration of idle periods and may
easily choose a channel with very short idle time.

5.3. The impact of sensing error

In all previous experiments, the transmission tax
was set to 4 which means that, for each packet or
group of packets transmitted, the transmitting node
must perform the sensing duty for four consecutive
superframes. As the result, the coordinator receives a
substantial number of sensing reports and the sensing
error was kept low [18]. To investigate the sensitivity
of channel selection algorithms to the magnitude
of sensing error, we have repeated the experiments
described above but in a piconet which consisted of
five nodes with packet arrival rate of 0.001 packets per
node per time unit, which results in a rather low load
of about ρ = 0.05; moreover, the transmission tax was
set to one. As the result, the number of sensing reports
that arrive to the coordinator is considerably reduced
in comparison with the previous experiments, due to

the much lower traffic intensity and lower transmission
tax.

The diagrams in Fig. 5 present the probability
of type 1 and type 2 collisions obtained in this
setup under variable number of primary channels and
variable primary user activity factor, respectively. As
can be seen, the sensing error will be much higher
and overall performance is worse than in the case
with low sensing error, Figs. 3 and 4, since the
performance of working channel selection algorithms
critically depends on the accuracy and timeliness of
sensing information.

However, the deterioration is mostly confined to
the higher values of probability of type 1 collisions,
shown in the diagrams in the left-hand column of
Fig. 5. As explained in Section 4, these collisions
depend on both accuracy of sensing information and
the dynamics of primary user activity. Lower accuracy
of sensing information leads to erroneous decisions
of the channel selection process, regardless of the
algorithm used, and the probability that a busy channel
is selected increases. Still, the increase is not too high:
the probability of type 1 collisions is below 0.15 under
histogram-based estimation in both diagrams.

At the same time, the probability of type 2
collisions, diagrams in the right-hand column of
Fig. 5, is only marginally higher than in the case where
sensing error is low, Fig. 3. This is not unexpected:
namely, once the piconet selects an idle channel, any
error in sensing information becomes irrelevant and a
collision may occur only if the channel becomes busy
with primary user activity.

As before, histogram-based selection provides the
best performance under both variable number of
primary channels and variable parameter k of the
Erlang-distributed active and idle periods of primary
user activity. The advantage is more pronounced under
heterogeneous primary user activity, shown in the
diagrams in the bottom row of Fig. 5, but it is
nevertheless noticeable under homogeneous primary
user activity as well, as can be seen in the diagrams in
the top row.

5.4. On estimation-based approaches to
channel selection

In particular, both kernel-based estimators are con-
sistently inferior to histogram-based estimation.
Experiments with the number of observations ranging
from 20 to 200 and bandwidths ranging from 0.5sfm
to 2sfm did not produce much improvement in this
respect. The explanation seems to lie in the difference
between the two estimation techniques.
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(a) Probability of type 1 collisions under homogeneous
primary user activity, variable Erlang k factor of primary user
activity distribution.
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(b) Probability of type 2 collisions under homogeneous
primary user activity, variable Erlang k factor of primary user
activity distribution.
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(c) Probability of type 1 collisions, under heterogeneous
primary user activity, random primary user activity period and
activity factor.
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(d) Probability of type 2 collisions, under heterogeneous
primary user activity, random primary user activity period and
activity factor.

Fig. 5. Performance of working channel selection algorithms under high sensing error.

Namely, histogram-based estimation performs
pooling of observations in appropriate bins, and the
number of observations involved in the process is
essentially unlimited.

On the other hand, kernel-based estimation attempts
to achieve a similar effect through the use of the kernel
function which tends to ‘spread’ the impact of each
observation. The accuracy of this estimation is limited
in practice by the need to keep track of individual
observations, which is why the resulting error is higher
than in the case of histogram-base estimation.

Furthermore, the actual times of channel status
change (from active to idle and vice versa) are
not really known due to sensing errors and the
delay in conveying the results of sensing to the

coordinator. The pooling which is ‘naturally’ provided
by the histogram tends to absorb and suppress these
errors which, in most cases, allows it to achieve
superior accuracy. The diagrams in Fig. 5 confirm
this hypothesis, as histogram-based channel selection
provides good results despite the higher level of
sensing errors.

6. Conclusions and future work

Our results confirm that knowledge of primary
user activity patterns can reduce the probability
that a cognitive piconet will experience collisions
with primary user activity. We have compared the
performance of different algorithms for working
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channel selection. In case of homogeneous primary
users, best results are obtained when the next working
channel is selected among the channels that have most
recently turned idle. In case of heterogeneous primary
users, where mean activity periods and/or activity
factors are different from one channel to the next,
best results are obtained by a simple histogram-based
estimation of the probability distribution of channel
idle times. Histogram-based estimation is also least
impacted by the accuracy of sensing information and
it can easily be modified to adapt to nonstationarity of
primary user activity patterns.

Our future work will focus on the design and
performance evaluation of an adaptive channel
selection approach whereby the coordinator would
maintain historical information about the probability
distributions of channel idle times, and make the
decision to use one or the other selection algorithm
on the basis of the shape of those probability
distributions. Other possible improvements might
involve taking into account channel active times as
well, and also extending the algorithm to allow the
selection of backup channels that are to be used in case
of a collision.
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21. Mišić VB, Mišić J. Cognitive MAC protocol with trans-
mission tax: Dynamically adjusting sensing and data
performance. Proc. Global Telecommunications Conference
GLOBECOM’10, Miami, FL, 2010.
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