
Performance Modeling of Cloud Computing Centers

by

Hamzeh Khazaei

A thesis submitted to

The Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements

of the degree of

Doctor of Philosophy

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba, Canada

October 2012

c© Copyright by Hamzeh Khazaei, 2012

Thesis advisor Author

Jelena Mišić and Rasit Eskicioglu Hamzeh Khazaei

Performance Modeling of Cloud Computing Centers

Abstract
Cloud computing is a general term for system architectures that involves delivering

hosted services over the Internet, made possible by significant innovations in virtualization

and distributed computing, as well as improved access to high-speed Internet. A cloud

service differs from traditional hosting in three principal aspects. First, it is provided on

demand, typically by the minute or the hour; second, it is elastic since the user can have

as much or as little of a service as they want at any given time; and third, the service is

fully managed by the provider – user needs little more than computer and Internet access.

Typically a contract is negotiated and agreed between a customer and a service provider; the

service provider is required to execute service requests from a customer within negotiated

quality of service (QoS) requirements for a given price.

Due to dynamic nature of cloud environments, diversity of user’s requests, resource

virtualization, and time dependency of load, providing expected quality of service while

avoiding over-provisioning is not a simple task. To this end, cloud provider must have

efficient and accurate techniques for performance evaluation of cloud computing centers.

The development of such techniques is the focus of this thesis.

This thesis has two parts. In first part, Chapters 2, 3 and 4, monolithic performance

models are developed for cloud computing performance analysis. We begin with Poisson

ii

Abstract iii

task arrivals, generally distributed service times, and a large number of physical servers.

Later on, we extend our model to include finite buffer capacity, batch task arrivals, and

virtualized servers with a large number of virtual machines in each physical machine.

However, a monolithic model may suffer from intractability and poor scalability due to

large number of parameters. Therefore, in the second part of the thesis (Chapters 5 and 6)

we develop and evaluate tractable functional performance sub-models for different servic-

ing steps in a complex cloud center and the overall solution obtain by iteration over individ-

ual sub-model solutions. We also extend the proposed interacting analytical sub-models to

capture other important aspects including pool management, power consumption, resource

assigning process and virtual machine deployment of nowadays cloud centers. Finally, a

performance model suitable for cloud computing centers with heterogeneous requests and

resources using interacting stochastic models is proposed and evaluated.

Contents

Abstract . ii
Table of Contents . vi
List of Figures . vii
List of Tables . x
Acknowledgments . xi
Dedication . xii

1 Introduction 1
1.1 Cloud Computing . 1
1.2 Quality of Service . 6
1.3 Performance Analysis of Cloud Computing Centers 7
1.4 Performance Modeling: a Review . 10
1.5 Performance Modeling Based on Queuing Theory 11
1.6 Heterogeneity in Cloud Computing . 14
1.7 Cloud-Specific Task Assignment Policy 15
1.8 Organization of the Thesis . 17

2 Performance Modeling: Single Task Arrivals 20
2.1 Introduction . 22
2.2 Single Task Arrivals and Infinite Buffer Capacity 23

2.2.1 Approximate Analytical Model 24
2.2.2 Approximate Markov Chain . 25
2.2.3 Departure Probabilities . 27
2.2.4 Transition Matrix . 29
2.2.5 Numerical Validation . 31
2.2.6 Hyper-exponential Distribution for Service Time 34
2.2.7 Distribution of Waiting and Response Time 37
2.2.8 Experimental Results . 38

2.3 Single Arrival and Finite Capacity . 40
2.3.1 Approximate Analytical Model 42
2.3.2 Approximate Embedded Markov Chain 44

iv

Contents v

2.3.3 Equilibrium Balance Equations 45
2.3.4 Distribution of Number of Tasks in the System 46
2.3.5 Distribution of Waiting and Response Time 47
2.3.6 Probability of Immediate Service 48
2.3.7 Blocking Probability and Buffer Size 49
2.3.8 Numerical Validation . 49
2.3.9 Ergodicity: Basic Definitions, Lemmas and Theorems 57
2.3.10 Proof of Ergodicity . 60

2.4 Simulation . 64
2.5 Summary of the Chapter . 64

3 Performance Modeling: Batch (super-task) Arrivals 66
3.1 Related Work . 67
3.2 Approximate Analytical Model . 68
3.3 Approximation by Embedded Processes 69

3.3.1 Departure Probabilities . 74
3.3.2 Transition Matrix . 76

Region 1 . 76
Region 2 . 77
Number of idle PMs . 78
Region 3 . 79
Region 4 . 80

3.3.3 Equilibrium Balance Equations 81
3.3.4 Distribution of the Number of Tasks in the System 81
3.3.5 Blocking Probability . 83
3.3.6 Probability of Immediate Service 83
3.3.7 Distribution of Response and Waiting time in Queue 83

3.4 Numerical Validation . 84
3.5 The Impact of Homogenization . 89
3.6 Summary of the Chapter . 92

4 Performance Modeling: Virtualized Environment 94
4.1 Virtualized Physical Machines . 95
4.2 Analytical Model . 98
4.3 Numerical Validation . 102

4.3.1 Analytical Model Results . 103
4.3.2 Simulation Results . 105

4.4 The impact of homogenization . 107
4.5 Summary of the Chapter . 109

vi Contents

5 Interacting Fine-Grained Performance Model 111
5.1 Introduction . 112
5.2 Related Work . 114
5.3 Analytical Model . 116
5.4 Integrated Stochastic Models . 120

5.4.1 Resource Allocation Sub-Model 120
5.4.2 VM Provisioning Sub-Model . 124
5.4.3 Interaction among Sub-Models . 128

5.5 Numerical Validation - Pure Performance Model 129
5.6 Failure and Repair Effects of Cloud Resources 136
5.7 Availability Model . 137

5.7.1 Interaction among sub-models . 139
5.8 Numerical Validation - Availability Model 139
5.9 Summary of the Chapter . 144

6 Pool Management and Heterogeneity in Cloud Centers 145
6.1 Analytical Model . 146
6.2 Integrated Stochastic Models . 151

6.2.1 Resource Allocation Sub-Model 151
6.2.2 VM Provisioning Sub-Model . 155
6.2.3 Pool Management Sub-Model . 159
6.2.4 Interaction among Sub-Models . 161
6.2.5 Scalability and flexibility of integrated model 162

6.3 Numerical validation . 164
6.4 Heterogeneous Resources and Requests 173

6.4.1 VM Provisioning Sub-Model . 175
6.4.2 Interaction among Sub-Models . 180

6.5 Numerical validation: heterogeneous centers 181
6.6 Summary of the Chapter . 185

7 Summary and Future Work 187
7.1 Contributions . 187
7.2 Future Work . 190

List of Figures

1.1 Computing paradigm shift . 4
1.2 Cloud computing vs grid computing . 6
1.3 Amazon EC2 structure . 9

2.1 Cloud clients and service provider . 21
2.2 Embedded observing points . 26
2.3 State-transition-probability diagram for the infinite system 26
2.4 System behaviour between two arrivals . 28
2.5 Range of validity for pij equations . 30
2.6 Mean number of tasks in the system . 33
2.7 Mean response time for CoV = 0.7 . 34
2.8 Mean response time for CoV = 0.9 . 35
2.9 State-transition-probability diagram for the finite system 36
2.10 System behaviour between two arrivals . 37
2.11 Mean number of tasks in the system . 39
2.12 Mean response time . 40
2.13 Approximate embedded Markov chain . 44
2.14 One-step transition probability matrix . 45
2.15 Mean number of tasks in the system . 51
2.16 Blocking probability . 52
2.17 Probability of immediate service . 54
2.18 MGM-MChain for minimal capacity (k=1) 62
2.19 Merged MGM-MChain in two states . 63

3.1 A sample path of all processes . 70
3.2 The approximate embedded Markov chain (aEMC) 71
3.3 Observation points. 72
3.4 System behavior between two observation points. 74
3.5 One-step transition probability matrix . 77
3.6 Probability of having n idle PMs . 79
3.7 Performance indicators . 86

vii

viii List of Figures

3.8 Response time and waiting time in queue. 87
3.9 Higher moment related performance metrics. 88
3.10 Two configurations of the cloud computing center. 90
3.11 Heterogeneity vs homogeneity (service time) 91
3.12 Heterogeneity vs homogeneity (super-task’s size) 92

4.1 The architecture of the cloud center. 96
4.2 Performance vs. no. of tiles. 99
4.3 Normalized mean service time vs. no. of tiles. 100
4.4 Probability of having n idle PMs . 102
4.5 Performance measures in the analytical model 104
4.6 Performance measures in the simulation model 106
4.7 Heterogeneity vs homogeneity (service time) 108
4.8 Heterogeneity vs homogeneity (super-task’s size) 109

5.1 The steps of servicing and corresponding delays. 119
5.2 Resource allocation sub-model. 122
5.3 Three steps of look-up delays among pools. 123
5.4 Virtual machine provisioning sub-model for a PM in the hot pool. 126
5.5 Interaction diagram among sub-models. 129
5.6 VMmark results and normalized mean service time. 132
5.7 Look-up time characteristics. 133
5.8 Single VM deployed on each PM. 134
5.9 Single VM on each PM. 135
5.10 Ten VMs are allowed on each PM. 136
5.11 The availability model for 5 PMs in the pools. 138
5.12 General availability model. 138
5.13 Interaction between sub-models. 140
5.14 arrival-rate=900 tasks/hour. 141
5.15 service-time=120 minute. 142
5.16 service-time=120 minute and arrival-rate=2500 tasks/hour. 143

6.1 The steps of servicing and corresponding delays. 146
6.2 Resource Allocation Sub-Model (RASM). 152
6.3 Three steps of look-up delays among pools. 155
6.4 VM Provisioning Sub-Model for a PM in the hot pool. 155
6.5 Pool Management Sub-Model (PMSM). 160
6.6 Interaction diagram among sub-models. 162
6.7 Performance metrics w.r.t service time. 166
6.8 Performance metrics w.r.t arrival rates. 167
6.9 Performance metrics w.r.t super-task size. 168
6.10 Performance metrics w.r.t hot pool checking rate. 170
6.11 Normalized power consumption. 171

List of Figures ix

6.12 Specification of a typical super-task submitted by users. 174
6.13 Virtual machine provisioning sub-model for a PM in the hot pool. 177
6.14 Interaction among sub-models. 180
6.15 arrival-rate=500 tasks/hour. 182
6.16 service-time=60 minute. 183
6.17 service-time=60 minute, aggregate arrival-rate=4500 tasks/hour. 184

List of Tables

1.1 Cloud Computing: Some Definitions. 3
1.2 Top 10 Obstacles to and Opportunities for Growth of Cloud Computing [5]. 5

2.1 Moments of response time, CoV = 0.5 . 41
2.2 Moments of response time, CoV = 1.4 . 41
2.3 Characterization of response time distribution, CoV = 0.5, m = 50 56
2.4 Characterization of response time distribution, CoV = 1.4, m = 50 57
2.5 Characterization of response time distribution, CoV = 0.5, m = 100 58
2.6 Characterization of response time distribution, CoV = 1.4, m = 100 59

3.1 Parameters for optimum exponential curves aebx. 79

4.1 VMmark workload summary per tile (adapted from [33]). 95
4.2 Parameters for optimum exponential curves abx. 101

5.1 Symbols and corresponding descriptions 118

6.1 Symbols and corresponding descriptions. 150
6.2 Modules and their corresponding sub-models. 151
6.3 Sub-models and their outputs. 161
6.4 Relationship between the size of sub-models and design parameters. 164
6.5 Range of parameters for numerical experiment. 165
6.6 Three configuration settings for the experiment. 172
6.7 Steady-state configuration of pools. 172
6.8 Specifications of PMs in each pool. 181

x

Acknowledgments

It would not have been possible to write this doctoral thesis without the help and support

of the kind people around me, to only some of whom it is possible to give particular mention

here.

First and foremost, my utmost gratitude to Prof. Jelena Mišić, whose guidance, support

and encouragement I will never forget. Prof. J. Mišić has been my inspiration as I hurdle

all the obstacles in the completion this research work.

Next, I would like to thank my co-supervisor Dr. Rasit Eskicioglu for his help and

contribution on this work. My special thank goes to Prof. Vojislav B. Mišić for all his

great contribution, support and friendship that have been invaluable on both academic and

personal level, not to mention his advices and unsurpassed knowledge of cloud computing.

Amongst my fellow postgraduate students in the department of computer science, I

wish to thank my friends Saeed Rashwand and Subir Biswas for their consults and friendly

advices. Last, but by no means least, I am most grateful to my dear wife, Nasim Beigi-

Mohammadi, for her everlasting support and encouragement.

For any errors or inadequacies that may remain in this work, of course, the responsibil-

ity is entirely my own.

xi

This thesis is dedicated to my wonderful wife for all her kindness and

unbounded support.

xii

Chapter 1

Introduction

In this Chapter, we first describe Cloud Computing as a new paradigm of computing.

The main challenge and obstacle of cloud computing, Quality of Service (QoS), is defined

and the general aspects of QoS are explored. Later the performance evaluation in cloud

computing, the related work and the challenges are highlighted. We wrap up the Chapter

with outline and organization of the thesis proposal.

1.1 Cloud Computing

With the advancement of human society, basic essential services are commonly pro-

vided such that everyone can easily obtain access to them. Today, utility services such as

water, electricity, gas, and telephony are deemed necessary for fulfilling daily life routines.

These utility services are accessed so frequently that they need to be available at any time.

Consumers are then able to pay service providers based on their usage of these utility ser-

vices. In 1969, Leonard Kleinrock said: “As of now, computer networks are still in their

1

2 Chapter 1: Introduction

infancy, but as they grow up and become sophisticated, we will probably see the spread of

‘computer utilities’ which, like present electric and telephone utilities, will service individ-

ual homes and offices across the country.” [58] This vision of the computing utility based

on a service provisioning model anticipates the massive transformation of the entire com-

puting industry in the 21st century, whereby computing services will be readily available

on demand, like other utility services. As a result, there will be no need for the consumers

to invest heavily in building and maintaining complex IT infrastructure [11]; instead, they

will pay only when they access computing services. Nowadays, significant innovations in

virtualization and distributed computing, as well as improved access to high-speed Internet,

have accelerated interest in cloud computing [95]. It is quickly gaining acceptance: Ac-

cording to IDC, 17 billion dollars was spent on cloud-related technologies, hardware and

software in 2009, and spending is expected to grow to 45 billion by 2013 [74]. Cloud com-

puting has a service oriented architecture in which services are broadly divided into three

categories: Infrastructure-as-a-Service (IaaS), where equipment such as hardware, storage,

servers, and networking components are made accessible over the Internet); Platform-as-

a-Service (PaaS), which includes computing platforms—hardware with operating systems,

virtualized servers, and the like; and Software-as-a-Service (SaaS), which includes soft-

ware applications and other hosted services [23].

A cloud service differs from traditional hosting in three principal aspects. First, it is

provided on demand, typically by the minute or the hour; second, it is elastic since the user

can have as much or as little of a service as they want at any given time; and third, the

service is fully managed by the provider [40].

There is no unique definition for cloud computing. In Table 1.1, we present some com-

Chapter 1: Introduction 3

Table 1.1: Cloud Computing: Some Definitions.

Author/Reference Year Definition

R. Buyya [11] 2008 A Cloud is a type of parallel and distributed system consisting of a collection

of interconnected and virtualized computers that are dynamically provisioned

and presented as one or more unified computing resources based on service-

level agreements established through negotiation between the service provider

and consumers.

E. Hand [31] 2007 Cloud computing is a new computing paradigm, in which not just our data but

even our software resides in there and we access everything not only through

our PCs but also Cloud-friendly devices, such as smart phones and PDAs.

L. Wang [100] 2010 A computing Cloud is a set of network enabled services, providing scalable,

QoS guaranteed, normally personalized, inexpensive computing infrastructures

on demand, which could be accessed in a simple and pervasive way.

I. Foster [21] 2008 A large-scale distributed computing paradigm that is driven by economies of

scale, in which a pool of abstracted, virtualized, dynamically-scalable, man-

aged computing power, storage, platforms, and services are delivered on de-

mand to external customers over the Internet.

L. Vaquero [95] 2008 Cloud Computing is a novel paradigm for the provision of computing infras-

tructure, which aims to shift the location of the computing infrastructure to the

network in order to reduce the costs associated to management and mainte-

nance of hardware and software resources.

mon definitions. we also state our definition of cloud computing as follows:

“Cloud computing is a new computing paradigm, whereby shared resources such as infras-

tructure, hardware platform, and software applications are provided to users on-demand

over the Internet (Cloud) as services.”

4 Chapter 1: Introduction

Figure 1.1: Computing paradigm shift. Over six distinct phases, computers have evolved
from dummy terminals to grids and clouds [98].

Figure 1.1 illustrates the computing paradigm shift of the last half century [98]. Specif-

ically, the figure identifies six distinct phases. In Phase 1, people used terminals to connect

to powerful mainframes shared by many users. Back then, terminals were basically little

more than keyboards and monitors. In Phase 2, stand-alone personal computers (PCs) be-

came powerful enough to satisfy users’ daily work; One didn’t have to share a mainframe

with anyone else. Phase 3 ushered in computer networks that allowed multiple computers

to connect to each other. One could work on a PC and connect to other computers through

local networks to share resources. Phase 4 saw the advent of local networks that could

connect to other local networks to establish a more global network users could now con-

nect to the Internet to utilize remote applications and resources. Phase 5 brought us the

Chapter 1: Introduction 5

concept of an electronic grid to facilitate shared computing power and storage resources

(distributed computing). People used PCs to access a grid of computers in a transparent

manner. Now, in Phase 6, cloud computing lets us exploit all available resources on the

Internet in a scalable and simple way.

Authors et al. [5] have listed 10 top obstacles and opportunities for growth of Cloud

Computing (Table 1.2); the first three concern adoption, the next five affect growth, and

the last two are policy and business obstacles. Each obstacle is paired with an opportunity,

ranging from product development to research projects, which can overcome that obstacle.

Table 1.2: Top 10 Obstacles to and Opportunities for Growth of Cloud Computing [5].

Obstacle Opportunity

1 Availability of Service Use Multiple Cloud Providers; Use Elasticity to Prevent DDOS

2 Data Lock-In Standardize APIs; Compatible SW to enable Surge Computing

3 Data Confidentiality and Auditability Deploy Encryption, VLANs, Firewalls; Geographical Data Storage

4 Data Transfer Bottlenecks FedExing Disks; Data Backup/Archival; Higher BW Switches

5 Performance Unpredictability Improved VM Support; Flash Memory; Gang Schedule VMs

6 Scalable Storage Invent Scalable Store

7 Bugs in Large Distributed Systems Invent Debugger that relies on Distributed VMs

8 Scaling Quickly Invent Auto-Scaler that relies on ML; Snapshots for Conservation

9 Reputation Fate Sharing Offer reputation-guarding services like those for email

10 Software Licensing Pay-for-use licenses; Bulk use sales

Although benefits and opportunities that cloud computing has been bringing about are

tremendous, its challenges and problems that require huge amount of effort to be addressed

by researchers. Since 2007 that cloud computing has gotten high attention until now, the

6 Chapter 1: Introduction

trend of search volume index has been increasing sharply. Figure 1.2 shows the trend of

search volume index for Cloud Computing versus Grid Computing using Google trend

service during past years.

Figure 1.2: Search Volume index for Cloud Computing vs Grid Computing; provided by
Google trends on April 2011.

1.2 Quality of Service

The success of next-generation cloud computing infrastructures will depend on how ef-

fectively these infrastructures will be able to instantiate and dynamically maintain comput-

ing platforms, constructed out of cloud resources and services, that meet varying resource

and service requirements of cloud costumer applications, which are characterized by Qual-

ity of Service (QoS) requirements, such as timeliness, scalability, high availability, trust,

security, specified in the so-called Service Level Agreements (SLAs). In essence, an SLA

is a legally binding contract which states the QoS guarantees that an execution environ-

Chapter 1: Introduction 7

ment, in this case a cloud based computing platform, has to provide its hosted applications

with [20].

Because everything is delivered to cloud users as services, QoS has a great impact

on growth and acceptability of cloud computing paradigm. Both industrial and research

communities are showing increases of interest into QoS assurance within the context of

cloud computing. In order that cloud service providers can provide cloud users with the

appropriate quality of service, they must be guaranteed a determined QoS from the provider

server.

Providing quality services require a solid model that provides detailed insights of com-

puting centers. As our discussion of existing research on performance modeling (section

1.4) shows, there is no proper model in literature that adequately addresses the scale, di-

versity and dynamic of today cloud computing centers. The first intent of this work is to

propose an analytical model for performance modeling of cloud computing centers. Pro-

vided that offering quality services may be more attainable for cloud services providers.

1.3 Performance Analysis of Cloud Computing Centers

Due to dynamic and virtualized nature of cloud environments, diversity of user’s re-

quests and time dependency of load, providing expected quality of service while avoiding

over-provisioning is not a simple task [102]. To ensure that the QoS perceived by end

clients is acceptable, the providers must exploit techniques and mechanisms that guaran-

tee a minimum level of QoS. Although QoS has multiple aspects such as response time,

throughput, availability, reliability, and security, the primary aspect of QoS considered in

this work is related to response time [25].

8 Chapter 1: Introduction

Cloud computing has been the focus of much research in both academia and industry,

however, implementation-related issues have received much more attention than performance-

related ones; in this work we describe an analytical model for evaluating the performance

of cloud server farms under vast variety of configurations and assumptions and verify its

accuracy with numerical calculations and simulations.

SLA outlines all aspects of cloud service usage and the obligations of both service

providers and clients, including various performance descriptors collectively referred to as

QoS, which may include response time, availability, throughput, reliability, security, and

many others. An important subset of performance indicators , which this work deals with,

consists of response time, task blocking probability, probability of immediate service, and

mean number of tasks in the system [100]. These indicators may be determined using

the tools of queueing theory [57]; however, cloud centers differ from traditional queueing

systems in a number of important aspects:

• A cloud center can have a large number of facility (server) nodes, typically of the

order of hundreds or thousands [2]; traditional queueing analysis rarely considers

systems of this size.

• Task service times must be modeled by a general, rather than the more convenient

exponential, probability distribution. Consider, for example, the Amazon Elastic

Compute Cloud (EC2) which offers three types of services [2]: Reserved services

are reserved and paid for in advance, so they are guaranteed by the provider and thus

experience virtually no queuing; Spot services are also allocated in advance, but they

go to the customer who offer a higher bid than Spot price set by Amazon; Spot Prices

fluctuate periodically depending on the supply of and demand for Spot Instance ca-

Chapter 1: Introduction 9

Figure 1.3: Amazon EC2 structure, adapted from [2].

pacity. Finally, On-Demand services provide no advance reservations and no long

term commitment, which is why the clients’ tasks may experience non-negligible

queuing delays and, possibly, blocking. Within the on-demand category, a request

may target a specific infrastructure instance, a platform, or a software application,

with probability of α, θ, and β, respectively, as shown in Fig. 1.3; the same story is

held within each tuple. Because we assumed that task requests arrive one at a time,

all the probabilities, α, θ, and β, as well as branching probabilities within tuples are

independent of each other. Assuming that the service time for each tuple follows

a simple exponential or Erlang distribution, the aggregate service time of the cloud

10 Chapter 1: Introduction

center would follow a hyper-exponential or hyper-Erlang distribution – one in which

the coefficient of variation, CoV , defined as the ratio of standard deviation and mean

value, exceeds one [13]. Consequently, even in the above-mentioned scenario, which

is a rather simple one, only a general assumption of distribution can substantiate the

actual task service time; in practical calculations, we will have to choose a specific

probability distribution that allows widely varying values for the coefficient of varia-

tion CoV .

• Finally, due to the dynamic nature of cloud environments, diversity of user’s requests

and time dependency of load, cloud centers must provide expected quality of service

at widely varying loads [102], [7].

1.4 Performance Modeling: a Review

Cloud computing has attracted considerable research attention, but only a small por-

tion of the work done so far has addressed performance issues, and the rigorous analytical

approach has been adopted by only a handful among these. In [102], a cloud center is mod-

elled as the classic open network, from which the distribution of response time is obtained,

assuming that both inter-arrival and service times are exponential. Using the distribution of

response time, the relationship among the maximal number of tasks, the minimal service

resources and the highest level of services was found.

In [103], the cloud center was modeled as an M/M/m/m + r queuing system from

which the distribution of response time was determined. Inter-arrival and service times

were both assumed to be exponentially distributed, and the system had a finite buffer of

Chapter 1: Introduction 11

size m + r. The response time was broken down into waiting, service, and execution

periods, assuming that all three periods are independent (which is unrealistic, according to

authors’ own argument).

Authors et al. [108] studied the response time in terms of various metrics, such as the

overhead of acquiring and realizing the virtual computing resources, and other virtualiza-

tion and network communication overhead. To address these issues, they have designed

and implemented C-Meter, a portable, extensible, and easy-to-use framework for generat-

ing and submitting test workloads to computing clouds.

1.5 Performance Modeling Based on Queuing Theory

As we mentioned in section 1.3, a large queuing system (number of servers is large,

e.g., more than 100) that is assumed to have Poisson arrival process and generally dis-

tributed service time can be a proper abstract model for performance evaluation of a cloud

center. However analyzing queuing system with generally distributed service time is not

an easy task; the only generally distributed service time queuing systems that have exact

and closed-form solution are the M/G/1 and M/G/m/m, which are not quite suitable for

cloud computing performance modeling. Cloud centers have large number of servers as

well as extra capacity for holding upcoming requests.

In general, analysis in the case where either inter-arrival or service times (or both)

are not exponential is very complex. Theoretical analyses have mostly relied on extensive

research in performance evaluation ofM/G/m queuing systems, as outlined in [35, 64, 68,

71, 72, 104]. As solutions for mean response time and queue length in M/G/m systems

cannot be obtained in closed form, suitable approximations were sought. However, most of

12 Chapter 1: Introduction

these provide reasonably accurate estimates of mean response time only when number of

servers is comparatively small, (say, less than ten or so), but fail for large number of servers

[10, 53, 88, 93]. Approximation errors are particularly pronounced when the offered load

ρ is small, and/or when both the number of servers m and the coefficient of variation of

service time distribution, CoV, are large.

An approximate solution for steady-state queue length distribution in an M/G/m sys-

tem with finite waiting space was described in [55]. As the approximation was given in an

explicit form, its numerical computation is easier than when using earlier approximations

[35, 92]. The proposed approach is exact for M/G/m/m+ r when r = 0, and reasonably

accurate in the general case when r 6= 0, but only when the number of servers m is small,

below 10 or so.

A similar approach in the context ofM/G/m queues, but extended so as to approximate

the blocking probability and, thus, to determine the smallest buffer capacity such that the

rate of lost tasks remains under predefined level, was described in [54]. An interesting

finding is that the optimal buffer size depends on the order of convexity for the service

time; the higher this order is, the larger the buffer size should be.

An approximation for the average queueing delay in an M/G/m/m + r queue, based

on the relationship of joint distribution of remaining service time to the equilibrium service

distribution, was proposed in [71]. Another approximation for the blocking probability in

M/G/m/m + r queues, based on the exact solution for finite capacity M/M/m/m + r

queues, was proposed in [84]. Again, the estimate of the blocking probability is used to

guide the allocation of buffers so that the loss/delay blocking probability remains below a

specific threshold.

Chapter 1: Introduction 13

It is worth noting that most of these results rely on some approximation(s) to obtain

a closed-form solution; as a result, they are applicable in a limited range of values of the

relevant system parameters:

• Approximations are reasonably accurate only when the number of servers is compar-

atively small, typically below 10 or so, which makes them unsuitable for performance

analysis of cloud computing data centers.

• Approximations are very sensitive to the probability distribution of task service times,

and they become increasingly inaccurate when the coefficient of variation of the ser-

vice time, CoV , increases toward and above the value of one.

• Finally, approximation errors are particularly pronounced when the traffic intensity ρ

is small, and/or when both the number of servers m and the CoV of the service time,

are large [10, 53, 93].

Therefore, the results mentioned above are not directly applicable to performance anal-

ysis of cloud computing server farms where the number of servers is huge, the distribution

of service times is unknown and does not, in general, follow any of the ‘well-behaved’

probability distributions such as exponential distribution, and where the offered load can

vary from very low values to those close to one. Consequently, we developed the model

for performance evaluation of cloud centers that will be described and evaluated in the next

Chapters.

14 Chapter 1: Introduction

1.6 Heterogeneity in Cloud Computing

One of the prime challenges in cloud computing performance modeling is the innate

heterogeneity in such environments. We plan to cover this issue in this thesis partially

and leave the rest as future work. The main contributions in this area have been listed in

followings.

Authors et al. [77] deal with heterogeneity in computing. They propose a framework

and obtain three results: (1) if one can replace only one computer in a cluster by a faster

one, then it is (almost) always most advantageous to replace the fastest computer;(2) if the

computers in two n-computer clusters have the same mean speed, then the cluster with the

larger variance in computers speeds is (almost) always the faster one; (3) heterogeneity can

actually lend power to a cluster.

Authors et al. [77] consider the impact of server heterogeneity on the performance of

server systems. They show later heterogeneity is not always detrimental using a simple

analytical model for a system with two clusters of two servers each; larger system are dealt

with through simulation.

Authors et al. [107] try to answer this question: how slow a physical node can be for a

given task to maintain its optimal computing quality in terms of execution time and energy

cost? To tackle the issue, a probabilistic model for heterogeneous cloud environment is

established. Using proposed model, the authors evaluate the trade-off of task execution

time and energy consumed by task execution. Their finding suggest that computing nodes

that are 3x or slower that the fastest node should be discarded from the cloud for achieving

an optimal energy delay product. The authors do not discuss whether such a strategy is still

optimal in terms of other performance indicators or not. Moreover, in cloud computing

Chapter 1: Introduction 15

centers, their suggestion might not be completely true where virtualization may help to

make the most of slow servers.

Authors et al. [107] discuss the limiting values of node (servers) speed needed to main-

tain prescribed values of executing time and energy cost. Using a probabilistic model for

a heterogeneous cloud environment, they however evaluated the trade-of of task execution

time and energy consumed by task execution. The authors do not discuss whether such

a strategy is optimal in terms of other performance indicators or not. Moreover, in cloud

computing centers, their suggestion might not be completely true where virtualization may

help to make the most of slow servers.

1.7 Cloud-Specific Task Assignment Policy

Assuming heterogeneous environment brings another challenge which is known as de-

cision making of task assignment policy. Although this issue has been extensively stud-

ied in the area of cluster and grid computing, proposed techniques are not quite appli-

cable/useful to cloud computing paradigm due to different nature of cloud architecture

and user requests. One direction of future research can be proposing an efficient task as-

signment strategy whereby the utilization of cloud resources as well as the performance

indicators (e.g., waiting time, response time, blocking probability and probability of im-

mediate service) are improved simultaneously. Now, we survey existing literature in task

assignment policies in clouds.

Authors et al. [69] present the analysis of resource scheduling to achieve SLA-aware

profit optimization in cloud services. The priority of jobs in the queue is individually

evaluated and then the job with the highest priority is selected. Priority is computed based

16 Chapter 1: Introduction

on a task cost function and the penalty cost associated with tasks while they are waiting in

the queue.

A green scheduling algorithm integrating a neural network predictor for optimizing

server power consumption in cloud computing is proposed in [16]. The authors employ

the predictor to predict future load demand based on historical demand. According to the

prediction, the algorithm turns off unused servers and restarts them to minimize the number

of running servers, thus minimizing the energy use at the points of consumption to benefit

all other levels. In this work, task rejection rate is the only criterion for comparing the

proposed algorithm with the others.

A number of green task scheduling algorithms are implemented in [110]. They have

two main steps namely: assigning as many tasks as possible to a cloud server with lowest

energy, and setting the same optimal speed for all tasks assigned to each cloud server. These

green algorithms are developed for heterogeneous cloud servers with adjustable speed and

other parameters to effectively reduce energy consumption and finish all tasks before a

deadline. Using simulation they show that three of their algorithms outperform random

algorithm and they also identify the shortest task first (STF) as the best algorithm among

six proposed algorithms.

Load distribution and balancing in general parallel and distributed computing systems

have been extensively studied and a large body of literature exists (see the excellent collec-

tion [83]). In particular, the problems of optimal load distribution have been investigated

by using queueing models [39], [90], with various performance metrics such as weighted

mean waiting time [9], arithmetic average response time [59, 82], probability of load imbal-

ance [60], probability of load balancing success [76], mean response ratio [89], and mean

Chapter 1: Introduction 17

miss rate [32]. Optimal load distribution in a heterogeneous distributed computer system

with both generic and dedicated applications was studied in [8, 78, 61].

In [17], the authors analyze a multi-server heterogeneous exponential queue. They

demonstrate the methods for the calculation of the steady-state probabilities and deriving

the waiting and sojourn time (response time) distributions. Some performance characteris-

tics of such a system under the optimal control policy are calculated and compared with the

same characteristics for the model under other heuristic control policies, e.g., the usage of

the Fastest Free Server (FFS) or Random Server Selection (RSS). However, the analytical

model is a multidimensional Markov process w.r.t. number of servers. If the number of

servers gets larger, which is the case in cloud computing area, the analytical model will be

more complex correspondingly.

The problem of optimal load distribution of generic tasks on multiple heterogeneous

servers preloaded with special tasks in a cloud computing environment is proposed In [62].

The problem is formulated as a multi-variable optimization problem based on a queuing

model. The authors develop algorithms to find the numerical solution of an optimal load

distribution and the minimum average response time of generic tasks.

1.8 Organization of the Thesis

We started off with developing monolithic analytical models for performance evaluation

of cloud computing centers. Performance models presented in Chapter 2 are incorporating

the main concepts of nowadays cloud computing centers: having Poisson arrival of task re-

quests, generally distributed service time and large number of servers. Then, we extend the

performance model to incorporate the user requests with hyper-exponentially distributed

18 Chapter 1: Introduction

task service time. Later on the assumption of finite capacity, which makes the model closer

to real cloud centers, is taking into account. Incorporating batch task arrivals is the next

improvement of the performance model (Chapter 3). More specifically, we assume gener-

ally distributed batch size, Poisson arrival process, generally distributed service time, large

number of servers and a finite capacity of input buffer for task requests. In Chapter 4, we

extend the analytical model for performance evaluation of highly virtualized cloud comput-

ing centers. Each server is permitted to run up to 200 VMs, just like state-of-the-art servers,

and the effects of virtualization on servers performance based on the real benchmark from

cloud providers is considered.

However, a monolithic model may suffer from intractability and poor scalability due to

large number of parameters. Therefore, we develop and evaluate tractable functional per-

formance sub-models to address the mentioned restrictions of monolithic models (Chapters

5 and 6). We construct separate sub-models for different servicing steps in a complex cloud

center and the overall solution obtain by iteration over individual sub-model solutions. We

also extend the proposed interacting analytical sub-models to capture other important as-

pects including pool management, power consumption, resource assigning process and vir-

tual machine deployment of nowadays cloud centers. Finally, a performance model suitable

for cloud computing centers with heterogeneous requests and resources using interacting

stochastic models is proposed and evaluated.

In the last part of this thesis, Chapter 7, the future research is planned. In a nutshell,

future research activities will embrace two parts: firstly, we plan to extend the heterogene-

ity from different angle in the performance model, namely VMs, PMs and user requests.

Secondly, we plan to propose and evaluate a cloud-specific task assignment policy that

Chapter 1: Introduction 19

improves both performance and energy consumption of cloud centers.

The main contribution of this thesis is developing detailed performance models for

cloud computing centers. More specifically, we incorporate generally distributed service

time, large number of servers, batch arrivals and a highly virtualized infrastructure as the

new features to our proposed monolithic performance models. Next, we break down the

monolithic performance models into sub-models to maintain tractability while extend the

granularity of models. Using interacting performance sub-models, for the first time, we

propose and evaluate a pool management schema as well as a heterogeneous performance

model suitable for large IaaS clouds.

Chapter 2

Performance Modeling: Single Task

Arrivals

In this Chapter, we present our work on performance evaluation of cloud computing

centers under single task arrivals. We investigate the performance of a Cloud center con-

sidering all important parameters; we model a cloud server farms analytically and also

simulate with the object-oriented Petri net-based discrete event simulation engine Artifex

by RSoftDesign, Inc. [79]. We begin with the evaluation of the performance of a typical

cloud center with large number of servers, generally distributed service time and variable

offered load [40].

We assume that any request goes through a facility node and then leaves the cloud

center. A facility node may contain different computing resources such as web servers,

database servers, and others, as shown in Fig. 2.1. We consider the time that a request

spends in one of those facility node as the response time; response time does not follow

any specific distribution. This model is flexible in terms of cloud center size and service

20

Chapter 2: Performance Modeling: Single Task Arrivals 21

time of customer requests;

Facility Node

Facility Node

Facility Node

Load Balancing Server

client

client

client

`

client

Figure 2.1: Cloud clients and service provider

We developed the analytical model based on queuing theory. We adopted M/G/m

queuing system as the abstract model for performance evaluation due to the characteristics

of cloud computing centers: having Poisson arrival of task requests, generally distributed

service time and large number of servers. Since there is no exact solution for M/G/m

queuing system known in the literature, we extended our model to incorporate the cloud

centers which have hyper-exponentially family (those distributions that have coefficient

of variation more than one) distribution of service time [41, 42]. Later on we added an

assumptions of finite capacity for cloud center, which made the model closer to a real

cloud centers [45].

This Chapter is organized as follows: Section 2.1 is an introduction to the basic char-

22 Chapter 2: Performance Modeling: Single Task Arrivals

acteristics of the model. Section 2.2 introduces analytical model for single arrival with

finite/infinite capacity. Section 2.5 concludes the Chapter providing main findings and re-

sults during this Chapter. Finally, In Section 2.4, we explain our simulation approach and

parameters.

2.1 Introduction

In this Chapter, we model cloud centers by two queuing systems in each of which we

will focus on the specific aspects of the cloud centers.

First, we model the cloud environment as an M/G/m queuing system which indicates

that inter-arrival times of requests are exponentially distributed, the service time is gener-

ally distributed and the number of facility nodes is m. Also, due to the the nature of cloud

environment (i.e., it is a service provider with potentially many customers), we pose no

restrictions on the number of facility nodes. Here we are mainly focused on the scale (large

number of servers) and generally distributed service time for tasks in a cloud center. The

relevant performance indicators are obtained by solving the model for various values of

variable parameters.

Second, we model the cloud center as anM/G/m/m+r queuing system with the input

buffer of finite capacity. Due to the introduction of finite capacity, the system may expe-

rience blocking of task requests. In this model we investigate the system under different

buffer space with fixed load values; we also examine the performance of general purpose

clouds (cloud centers that accept various types of requests) versus specific purpose clouds

under the same conditions (i.e., same load and probability distribution of service time).

Therefore, we incorporate necessary assumptions that are required for having a real

Chapter 2: Performance Modeling: Single Task Arrivals 23

performance model of cloud centers:

(i) Random arrival process (Poisson process)

(ii) Single arrival of tasks

(iii) Generally distributed task service time

(iv) Homogeneous vs. heterogeneous type of requests (Hyper/Hypo exponential service

time)

(v) Scale (Large number of servers)

These aspects have not been adequately addressed in existing research, as explained in

Chapter 1.

2.2 Single Task Arrivals and Infinite Buffer Capacity

In this Section, we explain our model for a cloud center with single task arrivals and

infinite capacity of input arrival buffer. We model a cloud center as a M/G/m queuing

system which indicates that the inter-arrival time of requests is exponentially distributed,

the service times of customers’ requests are independent and identically distributed random

variables with a general distribution whose service rate is µ; both µ and CoV , the coeffi-

cient of variation defined as standard deviation divided by the mean, are finite and less then

one [40, 41]. We concentrate on hypo-exponential distributed service time by assuming

the CoV less than one. Later we will incorporate hyper-exponential distributions for task

service time as well.

24 Chapter 2: Performance Modeling: Single Task Arrivals

2.2.1 Approximate Analytical Model

An M/G/m queuing system may be considered as a non-Markov process which can

be analyzed by applying the embedded Markov chain technique. Embedded Markov Chain

technique requires selection of Markov points in which the state of the system is observed.

We monitor the number of the tasks in the system (both in service and queued) at the

moments immediately before the task request arrival. However, such points (task’s arrivals)

are not Markov points since the distribution of service times are not Markovian. So we are

trying to approximately characterize the state of the system at the arrival points. Therefore

our analytical model is an approximation of the real system.

If we consider the system at arrival moments (Observation Points) and number these

instances 0, 1, 2, . . . , then we get a Markov chain [57]. Here, the system under considera-

tion contains m servers, which render service in order of task request arrivals. Task request

inter-arrival time A is exponentially distributed with rate to 1
λ

. We will denote its Cumu-

lative Distribution Function (CDF) as A(x) = Prob[A < x] and its probability density

function (pdf) as a(x) = λe−λx. Laplace Stieltjes Transform (LST) of interarrival time is

A∗(s) =

∫ ∞
0

e−sxa(x)dx =
λ

λ+ s
(2.1)

Task service times are identically and independently distributed according to a general

distribution B, with a mean service time equal to b = 1
µ

. The CDF of the service time is

B(x) = Prob [B < x], and its pdf is b(x). The LST of service time is

B∗(s) =

∫ ∞
0

e−sxb(x)dxS

.

Residual task service time is the time from a random point in task execution until task

Chapter 2: Performance Modeling: Single Task Arrivals 25

completion. We will denote it as B+. This time is necessary for our model since it repre-

sents time distribution between task arrival z and departure of the task which was in service

when task arrival z occurred. It can be shown as well that probability distribution of elapsed

service time (between start of the task execution and next arrival of task request B−) has

the same probability distribution [86]. The LST of residual and elapsed task service times

can be calculated in [86] as

B∗+(s) = B∗−(s) =
1−B∗(s)

sb
(2.2)

The offered load may be defined as

ρ ,
λ

mµ
(2.3)

For practical reasons, we assume that the system never enters saturation, which means that

any request submitted to the center will get access to the required facility node after a finite

queuing time. Furthermore, we also assume each task is serviced by a single server (i.e.,

there are no batch arrivals), and we do not distinguish between installation (setup), actual

task execution, and finalization components of the service time.

2.2.2 Approximate Markov Chain

We are looking at the system at the moments of task request arrivals – these points are

treated as Markov points. A given Markov chain has a steady-state solution if it is ergodic.

Based on conditions for ergodicity [57] and the above-mentioned assumptions, it is easy

to prove that our Markov Chain is ergodic (we provide the proof in Section 2.3.10). Then,

using the steady-state solution, we can extract the distribution of number of tasks in the

system as well as the mean response time.

26 Chapter 2: Performance Modeling: Single Task Arrivals

Figure 2.2: Embedded observing points

Let An and An+1 denote the moment of nth and (n + 1)th arrivals to the system, re-

spectively, while qn and qn+1 denote the number of tasks found in the system immediately

before these arrivals; this is schematically shown in Fig. 2.2. If vn+1 denotes the number of

tasks which are serviced and depart from the system between An and An+1, the following

holds:

qn+1 = qn − vn+1 + 1 (2.4)

Figure 2.3: State-transition-probability diagram for the M/G/m approximate embedded
Markov chain

We need to calculate the transition probabilities associated with this Markov chain,

defined as

pij , Prob [qn+1 = j|qn = i] (2.5)

Chapter 2: Performance Modeling: Single Task Arrivals 27

i.e., the probability that i + 1 − j customers are served during the interval between two

successive task request arrivals. Obviously for j > i+ 1

pij = 0 (2.6)

since there are at most i+ 1 tasks present between the arrival of An and An+1. The Markov

state-transition-probability diagram as in Fig. 2.3, where states are numbered according

to the number of tasks currently in the system (i.e those in service and those awaiting

service). For clarity, some transitions are not fully drawn. We have also highlighted the

state m because the transition probabilities are different for states on the left and right hand

side of this state (i.e., below and above m).

2.2.3 Departure Probabilities

Due to ergodicity of the Markov chain, an equilibrium probability distribution exist for

the number of tasks present at the arrival instants; so we define

πk = lim
n→+∞

Prob [qn = k] (2.7)

From [86], the direct method of solution for this equilibrium distribution requires that we

solve the following system of linear equations:

π = πP (2.8)

where π = [π0, π1, π2, . . .], and P is the matrix whose elements are one-step transition

probabilities pij .

To find the elements of the transition probability matrix, we need to count the number

of tasks departing from the system between two successive arrivals. Consider the behaviour

28 Chapter 2: Performance Modeling: Single Task Arrivals

Figure 2.4: System behaviour between two arrivals

of the system, as shown in Fig. 2.4. Each server has zero or more departures during the

time between two successive task request arrivals (the inter-arrival time). Let us focus on an

arbitrary server, which (without loss of generality) could be the server number 1. For a task

to finish and depart from the system during the inter-arrival time, its remaining duration

(residual service time defined in (2.2)) must be shorter than the task inter-arrival time. This

probability will be denoted as Px, and it can be calculated as

Px = Prob [A > B+] =

∫ ∞
x=0

P{A > B+|B+ = x }P{B+ = x}

=

∫ ∞
x=0

P{A > B+|B+ = x }dB+(x) =

∫ ∞
x=0

(∫ ∞
y=x

λe−λydy

)
dB+(x)

=

∫ ∞
x=0

∣∣−e−λy∣∣∞
y=x

dB+(x) =

∫ ∞
0

e−λxdB+(x) = B∗+(λ)

(2.9)

Physically this result presents probability of no task arrivals during residual task service

time. In the case when arriving task can be accommodated immediately by an idle server

(and therefore queue length is zero) we have to evaluate the probability that such task will

Chapter 2: Performance Modeling: Single Task Arrivals 29

depart before next task arrival. We will denote this probability as Py and calculate it as:

Py = Prob [A > B] =

∫ ∞
x=0

P{A > B|B = x }P{B = x}

=

∫ ∞
x=0

P{A > B|B = x }dB(x) =

∫ ∞
x=0

(∫ ∞
y=x

λe−λydy

)
dB(x)

=

∫ ∞
x=0

∣∣−e−λy∣∣∞
y=0

dB(x) =

∫ ∞
0

e−λxdB(x) = B∗(λ)

(2.10)

However, if queue is non-empty upon task arrival, the following situation may happen.

If between two successive new task arrivals a completed task departs from a server, that

server will take a new task from the non-empty queue. That task may be completed as well

before the next task arrival and if the queue is still non-empty new task may be executed,

and so on until either queue gets empty or new task arrives. Therefore probability of k > 0

job departures from a single server, given that there are enough jobs in the queue, can be

derived from expressions (2.9) and (2.10) as:

Pz,k = B∗+(λ)(B∗(λ))k−1 (2.11)

Note that Pz,1 = Px. Using these values we are able to compute the transition probabilities

matrix.

2.2.4 Transition Matrix

Based on our Markov chain, we may identify four different regions of operation for

which different conditions hold; these regions are schematically shown in Fig. 2.5, where

the numbers on horizontal and vertical axes correspond to the number of tasks in the system

immediately before a task request arrival (i) and immediately upon the next task request

arrival (j), respectively.

30 Chapter 2: Performance Modeling: Single Task Arrivals

Figure 2.5: Range of validity for pij equations

• Regarding the region labeled 1, we already know from Eq. 2.6 that pij = 0 for

i+ 1 < j.

• In region 2, no tasks are waiting in the queue, hence i < m and j ≤ m. Between

the two successive request arrivals, i + 1 − j tasks will complete their service. For

all transitions located on the left side of state m in Fig. 2.3, the probability of having

i+ 1− j departures is

pij =

(
i

i− j

)
P i−j
x (1− Px)jPy +

(
i

i+ 1− j

)
P i+1−j
x (1− Px)j−1(1− Py)

(2.12)

• Region 3 corresponds to the case where all servers are busy throughout the inter-

arrival time, i.e., i, j ≥ m. In this case all transitions remain to the right of state m

Chapter 2: Performance Modeling: Single Task Arrivals 31

in Fig. 2.3, and state transition probabilities can be calculated as

pij =
σ∑
s=φ

(
m

s

)
P s
x(1− Px)m−sP i+1−j−s

z,2 (1− Pz,2)s (2.13)

In the last expression, the summation bounds are

σ = min [i+ 1− j,m]

φ = min [i+ 1− j, 1]

• Finally, region 4, in which i ≥ m and j ≤ m, describes the situation where the first

arrival (An) finds all servers busy and a total of i − m tasks waiting in the queue,

which it joins; while at the time of the next arrival (An+1) there are exactly j tasks in

the system, all of which are in service. The transition probabilities for this region are

pij =
σ∑
s=1

(
m

s

)
P s
x(1− Px)m−s

(
η

α

)
Pψ
z,2(1− Pz,2)ζβ (2.14)

where we used the following notation:

σ = min [m, i+ 1− j]

η = min [s, i+ 1−m]

α = min [s, i+ 1− j − s]

ψ = max [0, i+ 1− j − s]

ζ = max [0, j −m+ s]

β =

 1 if ψ ≤ i+ 1−m

0 otherwise

(2.15)

2.2.5 Numerical Validation

The steady-state balance equations outlined above can’t be solved in closed form,

hence we must resort to a numerical solution. To obtain the steady-state probabilities

32 Chapter 2: Performance Modeling: Single Task Arrivals

π = [π0, π1, π2, ...], as well as the mean number of tasks in the system (in service and in

the queue) and the mean response time, we have used the probability generating functions

(PGFs) for the number of tasks in the system:

P (z) =
∞∑
k=0

πzz
k (2.16)

and solved the resulting system of equations using Maple 13 from Maplesoft, Inc. [66].

Since the PGF is an infinite series, it must be truncated for numerical solution; we have

set the number of equations to twice the number of servers, which allows us to achieve

satisfactory accuracy (as will be explained below), plus the necessary balance equation

i=2m∑
i=0

πi = 1. (2.17)

the mean number of tasks in the system is, then, obtained as

E[QS] = P
′
(1) (2.18)

while the mean response time is obtained using Little’s law as

E[RT] = E[QS]/λ (2.19)

We have assumed that the task service time follow the Gamma distribution with different

values for shape and scale parameters; however, our model may accommodate other distri-

butions without any changes. Then, we have performed two experiments with variable task

request arrival rate and coefficient of variation CoV (which can be adjusted in the Gamma

distribution independently of the arrival rate).

To validate the analytical solutions we have also built a discrete even simulator of the

cloud server farm using object-oriented Petri net-based simulation engine Artifex by RSoft-

Design, Inc. [79].

Chapter 2: Performance Modeling: Single Task Arrivals 33

(a) CoV = 0.7. (b) CoV = 0.9.

Figure 2.6: Mean number of tasks in the system: m = 50 (denoted with squares), 100
(circles), 150 (asterisks), and 200 (crosses).

The diagrams in Fig. 2.6 show analytical and simulation results (shown as lines and

symbols, respectively) for mean number of tasks in the system as functions of the offered

load ρ, under different number of servers. Two different values of the coefficient of vari-

ation, CoV = 0.7 and 0.9, were used; the corresponding results are shown in Figs. 2.6(a)

and 2.6(b). As can be seen, the results obtained by solving the analytical model agree very

well with those obtained by simulation.

The diagrams in Fig. 2.7, 2.8 show the mean response time, again for the same range of

input variables and for the same values of the coefficient of variation. As above, solid lines

correspond to analytical solutions, while different symbols correspond to different number

of servers. As could be expected, the response time is fairly steady up to the offered load

of around ρ = 0.8, when it begins to increase rapidly. However, the agreement between the

34 Chapter 2: Performance Modeling: Single Task Arrivals

(a) Results for 100 servers. (b) Results for 200 servers.

Figure 2.7: Mean response time CoV = 0.7, m = 50 (denoted with squares), 100 (aster-
isks), 150 (circles), and 200 (crosses).

analytical solutions and simulation results is still very good, which confirms the validity

of our modeling approach. As can be seen in this work we considered a cloud center with

CoV less than one that means the type of task requests are the same (homogeneous). In

next Section, we will deal with cloud centers that accept different type of task requests, in

which CoV is more than one.

2.2.6 Hyper-exponential Distribution for Service Time

Here we also model a cloud server farm based on the M/G/m queuing system. How-

ever in this work [41], we allow the CoV to be more than one; in other words, we consider

cloud centers with hyper-exponentially distributed task service time. As we mentioned in

Chapter 1, most of the approaches in literature fail to provide accurate results when the

Chapter 2: Performance Modeling: Single Task Arrivals 35

(a) Results for 100 servers. (b) Results for 200 servers.

Figure 2.8: Mean response time for CoV = 0.9, m = 50 (denoted with squares), 100
(asterisks), 150 (circles), and 200 (crosses).

CoV was larger than one. In this work we extend our model to accurately model cloud

centers that accept various types of requests.

Similar to the case of hypo-exponential distributed task service time, we adopt approx-

imate Embedded Markov chain technique; however we extract the transition probabilities

in such a way that can accommodate cloud centers with more dispersed service time distri-

bution (CoV larger than one) as well. The approximate Markov chain is presented in Fig.

2.9.

Departure probabilities are followed the values defined in Section 2.2.3. However tran-

sition probabilities in region 3 and 4 are different from those which were defined in Sec-

tion 2.2.4. As can be seen in Fig. 2.10 the system may have couple of departures between

two arrivals with a combination of probabilities (2.9) and (2.10).

36 Chapter 2: Performance Modeling: Single Task Arrivals

Figure 2.9: State-transition-probability diagram for the system.

we define the transition probabilities in region 3 in Fig. 2.5 as

pij =

minw,m∑
s1=min(w,1)

(
m

s1

)
P s1
x (1− Px)m−s1·

minw−s1,s1∑
s2=min(w−s1,1)

(
s1

s2

)
P s2
z,2(1− Pz,2)s1−s2 ·

(
s2

w − s1 − s2

)
Pw−s1−s2
z,3 (1− Pz,3)s2 (2.20)

Chapter 2: Performance Modeling: Single Task Arrivals 37

Figure 2.10: System behaviour between two arrivals

and in region 4 as follows:

pij =

minw,m∑
s1=(m−j)

(
m

s1

)
P s1
x (1− Px)m−s1·

minw−s1,s1∑
s2=min(w−s1,m−j)

(
s1

s2

)
P s2
z,2(1− Pz,2)s1−s2 ·

(
s2

w − s1 − s2

)
Pw−s1−s2
z,3 (1− Pz,3)s2

(2.21)

We solve equilibrium balance equations as we did in Section 2.2.5.

2.2.7 Distribution of Waiting and Response Time

Let W denote the waiting time in the steady state, and similarly let W (x) and W ∗(s) be

the CDF of W and its LST, respectively. For the M/G/m systems, authors in [53] showed

that the queue length, Q, has the same distribution as the number of tasks which arrive

during the waiting time, W ,

Q(z) = W ∗(λ(1− z)) (2.22)

38 Chapter 2: Performance Modeling: Single Task Arrivals

The left hand side of (2.22) in our system can be calculated as:

Q(z) =
k=m−1∑
k=0

πk +
k=2m∑
k=m

πkz
k−m (2.23)

Hence, we have

W ∗(s) = Q(z)|z=1−(s/λ) = Q(1− s/λ) (2.24)

Moreover, the LST of response time is

T ∗(s) = W ∗(s) B∗(s) (2.25)

in which the B∗(s) is the LST of service time. The i th moment t(i) of the response time

distribution is given by

t(i) =

∫ ∞
0

xidT (x) = i

∫ ∞
0

xi−1[1− T (x)]dx

= (−1)iT ∗(i)(0) i = 2, 3, 4, . . . (2.26)

2.2.8 Experimental Results

Since we assumed generally distributed service time, our model can accommodate any

probability distributions. We assumed Gamma distribution for the service time of tasks

because the CoV of this distribution can be set independently of mean. We have per-

formed two experiments with variable task request arrival rates and two values of CoV

for task’s service time. To validate the analytical solutions we have also extended our

simulation model accordingly. The diagrams in Fig. 2.11 show analytical and simulation

results (shown as symbols and lines, respectively) for mean number of tasks in the system

as functions of the offered load ρ, under different number of servers. Two different values

of the coefficient of variation, CoV = 0.5 and 1.4, were used; the corresponding results

Chapter 2: Performance Modeling: Single Task Arrivals 39

(a) CoV = 0.5 (b) CoV = 1.4

Figure 2.11: Mean number of tasks in the system: m = 50 (denoted with squares), 100
(circles), 150 (asterisks), and 200 (crosses).

are shown in Figs. 2.11(a) and 2.11(b). As can be seen, the results obtained by solving the

analytical model agree very well with those obtained by simulation.

The diagrams in Fig. 2.12(a) and Fig. 2.12(b) show the mean response time, again for

the same range of input variables and for the same values of the coefficient of variation.

As above, solid lines correspond to the results of simulation, while different symbols cor-

respond to different number of servers for analytical model results. As could be expected,

the response time is fairly steady up to the offered load of around ρ = 0.8, when it begins to

increase rapidly. However, the agreement between the analytical solutions and simulation

results is still very good, which confirms the validity of our modeling approach.

In addition, we have calculated the higher moments of response time which can be

used for measuring some distribution attributes such as variance, skewness and kurtosis.

40 Chapter 2: Performance Modeling: Single Task Arrivals

(a) Results for CoV = 0.5 (b) Results for CoV = 1.4

Figure 2.12: Mean response time m = 50 (denoted with squares), 100 (asterisks), 150
(circles), and 200 (crosses).

The results of simulation and analytical model for higher moments of response time are

presented in Tables 2.1 and 2.2, which reinforce the accuracy of the analytical model.

2.3 Single Arrival and Finite Capacity

We add another realistic assumption to our model which is the finite capacity of input

buffer space. In such a system if there was no room in the input buffer for new arrival task,

it would be blocked and get lost [45]. In this work, besides usual performance metrics (i.e.,

mean number of tasks in system, mean response and waiting time) we also obtain blocking

probability, probability of immediate service as well as higher moments related perfor-

mance indicators (i.e., standard deviation, skewness and kurtosis). In this work we obtain

the probability distribution of response and waiting time that provide in depth insights into

Chapter 2: Performance Modeling: Single Task Arrivals 41

Table 2.1: Moments of response time, CoV = 0.5

M/G/m Model 2th Moment 3th Moment 4th Moment

M/G/50 Simulation 5.00278 15.01101 52.53985

Analytical 5.01102 15.04245 52.67288

M/G/100 Simulation 5.00873 15.03138 52.61369

Analytical 5.00035 15.00136 52.50549

M/G/150 Simulation 5.01352 15.05314 52.70024

Analytical 5.00001 15.00006 52.50024

M/G/200 Simulation 5.10002 15.00094 52.80003

Analytical 5.00000 15.00001 52.50007

Table 2.2: Moments of response time, CoV = 1.4

M/G/m Model 2th Moment 3th Moment 4th Moment

M/G/50 Simulation 12.26235 123.23339 1735.6139

Analytical 12.05379 120.47252 1680.25010

M/G/100 Simulation 12.00365 120.02421 1680.00451

Analytical 12.00116 120.01035 1680.13771

M/G/150 Simulation 12.00093 120.00723 1680.0008

Analytical 12.00004 120.00037 1680.00502

M/G/200 Simulation 12.00011 120.00051 1680.00001

Analytical 11.99999 119.99995 1679.99944

behaviour of cloud centers under different parameter settings.

42 Chapter 2: Performance Modeling: Single Task Arrivals

2.3.1 Approximate Analytical Model

We model an cloud server farm as a M/G/m/m + r queuing system which indicates

that the inter-arrival time of requests is exponentially distributed, the task service times are

independent and identically distributed random variables with a general distribution whose

service rate is µ. The system under consideration contains m servers, which render service

in order of task request arrivals (FCFS). The capacity of system is m + r which means

the buffer size for incoming request is equal to r. We assume arrival process is Markovian

because first the population size of a typical cloud center is relatively high, second the

probability by which every single user request for cloud services is relatively small and

finally users’ requests are independent of each other; theoretically, if the user population

size of a queuing system is relatively high and the probability by which users arrive at

system is relatively small and independent, the arrival process can be adequately modeled

as a Markovian process. For detailed discussion see [30].

An M/G/m/m + r queuing system may be considered as a non-Markovian process

which can be approximately analyzed by applying the embedded Markov chain technique.

Embedded Markov Chain technique requires selection of Markov points in which the state

of the system is observed. Therefore, we model the number of the tasks in the system (both

in service and queued) at the moments immediately before task request arrivals. However,

as we mentioned before the arrival moments are not Markovian since the service time of

tasks are generally distributed; using embedded Markov chain technique, we approximately

characterize the state of system at such instances. If we enumerate these instances as 0, 1,

2, . . . , m+ r, we obtain a homogeneous Markov chain [57].

Task request arrivals follow a Poisson process so task request inter-arrival time A is

Chapter 2: Performance Modeling: Single Task Arrivals 43

exponentially distributed with rate of 1
λ

. We denote its CDF as A(x) = Prob[A < x] and

its pdf as a(x) = λe−λx. LST of inter-arrival time is

A∗(s) =

∫ ∞
0

e−sxa(x)dx =
λ

λ+ s

Task service times are identically and independently distributed according to a general

distribution B, with a mean service time equal to b = 1
µ

. The CDF of the service time is

B(x) = Prob [B < x], and its pdf is b(x). The LST of service time is

B∗(s) =

∫ ∞
0

e−sxb(x)dx

Residual task service time is the time interval from an arbitrary point (an arrival point

in a Poisson process) during a service time to the end of the service time; we denote it as

B+. Elapsed task service time is the time interval from the beginning of a service time to

an arbitrary point of the service time; we denote it as B−. It can be shown that probability

distribution of residual and elapsed task service times has the same probability distribution

and LST of them can be calculated as [86]

B∗+(s) = B∗−(s) =
1−B∗(s)

sb
(2.27)

The traffic intensity may be defined as

ρ ,
λ

mµ
(2.28)

where for practical reason we assume that ρ<1. At the moment of task arrival if the system

is full, the task would be lost. We assume that each task is serviced by a single server and

we do not distinguish between installation (setup), actual task execution, and finalization

components of the service time.

44 Chapter 2: Performance Modeling: Single Task Arrivals

Figure 2.13: Approximate embedded Markov chain

2.3.2 Approximate Embedded Markov Chain

We are looking at the system at the moments of task request arrivals – we treat these

points as Markov points. A given homogeneous Markov chain has a steady state solution if

it is ergodic, according to the definitions in [86]. Since the system has the finite capacity,

the Markov chain is finite (See Fig. 2.13). Departure probabilities are identical to those we

obtained in Section 2.2.3. However the transition probability matrix or range of validity is

different (Fig. 2.14).

Chapter 2: Performance Modeling: Single Task Arrivals 45

Figure 2.14: One-step transition probability matrix: Range of validity for pij equations.

2.3.3 Equilibrium Balance Equations

After finding matrix P, we can establish the balance equations. Such balance equa-

tions will have a unique steady state solution if corresponding Markov chine is ergodic.

A given Markov chain is ergodic if it is irreducible (all states are reachable from all other

states), aperiodic (for each states, the probability of returning to that state is positive for all

steps) and recurrent non-null (each state is revisited at finite time with probability 1) [86].

For convenience in notation, we call our Markov chain MGM-MChain afterwards.

Theorem 2.3.1 MGM-MChain is ergodic.

Proof See Section 2.3.10.

46 Chapter 2: Performance Modeling: Single Task Arrivals

It is known from [57] that for an ergodic Markov chain, there exist a unique steady state

distribution. In order to obtain the steady state distribution we need to solve the balance

equations. The balance equations balance the leaving and entering a state in equilibrium.

Here, the steady state balance equations can’t be solved in closed form, hence we must

resort to a numerical solution. The balance equations are:

πi =
m+r∑
j=0

πjpji , 0 ≤ i ≤ m+ r (2.29)

and augmented by the normalization equation

m+r∑
i=0

πi = 1. (2.30)

So far we havem+r+2 equations which includesm+r+1 linearly independent equations

from (2.29) and one normalization equation from (2.30); however we have m + r + 1

variables [π0, π1, π2, . . . , πm+r]; so in order to obtain the unique equilibrium solution we

need to remove one of the equations; the wise choice is the last equation in (2.29) due to

minimum information this equation holds about the system compared to the others.

2.3.4 Distribution of Number of Tasks in the System

Once we obtain the steady state probabilities, we are able to establish the PGFs for the

number of tasks in the system at the time of a task arrivals:

Π(z) =
m+r∑
k=0

πzz
k (2.31)

For any Poisson arrivals system, Poisson Arrival See Time Average, PASTA property

holds [86]; thus, the PGF Π(z) for the distribution of number of tasks in system at an

arrival time is identical to the PGF P (z) for the distribution of number of tasks in system

Chapter 2: Performance Modeling: Single Task Arrivals 47

at an arbitrary time:

P (z) = Π(z) (2.32)

Mean number of tasks in the system, then, obtained as

p = P
′
(1) (2.33)

By Little’s law, the mean response time is obtained as

t =
p

λ
(2.34)

2.3.5 Distribution of Waiting and Response Time

LetW denote the waiting time in the steady state, and similarly letW (x) andW ∗(s) be

the CDF, of W and its LST, respectively. For the M/G/m systems, authors in [53] showed

that Q, the queue length, has the same distribution as W ; so the number of tasks which

arrive during the waiting time is:

Q(z) = W ∗(λ(1− z)) (2.35)

The left hand side of (2.35) in our system can be calculated as:

Q(z) =
m−1∑
k=0

πk +
m+r∑
k=m

πkz
k−m (2.36)

As we have a finite capacity system (i.e., there may exist blocking), we shall use effective

arrival rate as:

λe = λ(1− πm+r)

Hence, we have

W ∗(s) = Q(z)|z=1−(s/λe) = Q(1− s/λe) (2.37)

48 Chapter 2: Performance Modeling: Single Task Arrivals

Moreover, the LST of response time is

T ∗(s) = W ∗(s) B∗(s) (2.38)

in which theB∗(s) is the LST of service time. The i th central moment, t(i), of the response

time distribution is given by

t(i) =

∫ ∞
0

xidT (x) = i

∫ ∞
0

xi−1[1− T (x)]dx = (−1)iT ∗(i)(0) i = 2, 3, 4, . . .

(2.39)

Using the first and second moments we can calculate standard deviation as [38]:

σT =

√
t(2) − t2 (2.40)

skewness as:

sk =
t(3) − 3tσ2

T − t
3

σ3
T

(2.41)

and kurtosis as:

ku =
t(4) − 4t(3)t− 6t(2)t

2 − 3t
4

σ4
T

− 3 (2.42)

2.3.6 Probability of Immediate Service

Here we are interested in the probability with that tasks will get into service immedi-

ately upon arrival, without any queueing:

Pnq =
m−1∑
i=0

πi (2.43)

For such tasks, the response time would be equal to the service time.

Chapter 2: Performance Modeling: Single Task Arrivals 49

2.3.7 Blocking Probability and Buffer Size

Since arrivals are independent of buffer state and the distribution of number of tasks

in the system was obtained, we are able to directly calculate the blocking probability of a

system with buffer size of r:

Pbr = πm+r (2.44)

The appropriate buffer size, rε, in order to have the blocking probability below the certain

value, ε, is:

rε = min{r ≥ 0 | Pbr ≤ ε & Pbr−1 > ε} (2.45)

2.3.8 Numerical Validation

The resulting balance equations of analytical model have been solved using Maple 13

from Maplesoft, Inc. [66]. As can be seen in equations (2.20) and (2.21), in analytical

model we modeled v=3 potential task departures between two consecutive task arrivals. To

validate the analytical solution, we have extended our simulation model according to the

analytical model.

We perform experiments for four cloud centers under variable capacities:

the number of servers are assumed to be 50, 100, 200 and 500; traffic intensity of ρ=0.85

and CoV = 0.5, 1.4 are set for experiments. The size of input buffer varies from r = 0

to m/2 in five steps. First couple of configurations, 50 and 100 server, may not be that

realistic compared to today cloud center dimension at first glance, though, they provide

a clear picture of system behavior with different input buffer capacity; moreover, at the

end of this Section we will discuss the advantages of having some small separated parallel

queues (small centers) instead of having one large center with single queue.

50 Chapter 2: Performance Modeling: Single Task Arrivals

There is no precise statistic or empirical results on percentage of different types of in-

stances for a real cloud provider. For instance, Amazon does not publish any information

regarding average traffic intensity, buffer space and the percentage of reserved, on-demand

or spot instances in their various centers; therefore, we assumed a cloud center which has

around 1000 server in which up to 50% percent of them supposed to be in on-demand cate-

gory. The input buffer size is also assumed to be comparatively small, at mostm/2, because

as can be seen in our discussion, at the end of this Section, providing larger input buffer

space has no effect on the system’s behavior; usually the system will get the equilibrium

state by lower buffer size than m/2.

The traffic intensity of cloud center is also assumed to be rather high, ρ=0.85, because

we suppose that a cloud provider tries to keep the traffic intensity up as much as possible

in order to make the most of prepared installed infrastructure. Lower traffic intensity may

be reasonable for large providers such as Google and Microsoft.

First we present mean number of tasks in the system and the results are presented in

Fig. 2.15. As can be seen mean number of tasks in the system increases smoothly while the

buffer size is getting larger values. Moreover, the larger the number of server, will resulted

in the lower the impact of increasing the buffer size. For instance, even with traffic intensity

of 0.85%, for a system with 500 server having 50 or infinite buffer rooms is identical.

We also have computed the blocking probability and the probability of immediate service

for four experiments (see Fig. 2.16). Results confirm that if the buffer size increased lin-

early the blocking probability would decrease exponentially. Moreover the appropriate

buffer size for having blocking rate less than a certain value can be estimated from the

plot. For instance, in case of M/G/50/50 + r, having tasks loss rate below two percent,

Chapter 2: Performance Modeling: Single Task Arrivals 51

(a) M/G/50/50+r, ρ=0.85 (b) M/G/100/100+r, ρ=0.85

(c) M/G/200/200+r, ρ=0.85 (d) M/G/500/500+r, ρ=0.85

Figure 2.15: Mean number of tasks in the system

is demanding the buffer size of at least five. As can be seen in Fig. 2.16(c) and (d),in

case of large system, adding small amount of input buffer space will result in no blocking

probability at all.

Since the percentage of tasks which can get immediately into the service is an important

52 Chapter 2: Performance Modeling: Single Task Arrivals

(a) M/G/50/50+r, ρ=0.85 (b) M/G/100/100+r, ρ=0.85

(c) M/G/200/200+r, ρ=0.85 (d) M/G/500/500+r, ρ=0.85

Figure 2.16: Blocking probability

non-functional service property in SLA, we also demonstrate the probability of immediate

service. Intuitively the ratio of tasks which can immediately get into service has no relation

to the capacity of system since getting blocked or serviced is determined by existence of

at least one idle server; however as can be seen in Fig. 2.17, particularly for small buffer

Chapter 2: Performance Modeling: Single Task Arrivals 53

size the probability of immediate service has sharply decreased. In case of having no buffer

space, tasks either would get through service or get blocked at once. On the other hand,

input buffer space will result in either immediate entry into service, queuing or blocking.

In other words, queuing decreases the probability of blocking as well as the probability

of getting immediately into service; however based on traffic intensity after adding some

buffer space the trend of immediate service probability will not be affected by extra capacity

any more.

We have also characterized the probability distribution of response time in Tables 2.3, 2.4,

2.5 and 2.6; here, we only show the results for cloud centers with 50 and 100 servers; be-

cause the discussion is aimed to highlight the influences ofCoV of service time on response

time. The results state that mean response time is slowly increasing as system capacity is

growing. Another fact is that the larger the number of servers will result in the shorter the

queue time for the same traffic intensity; as can be seen beyond a certain value of r adding

more buffer space no longer has effect on system’s mean response time.

In addition, we have calculated other characteristics of response time distribution; stan-

dard deviation, skewness and kurtosis have been obtained in order to have a better under-

standing of the distribution. Standard deviation in cases of CoV =1.4 is clearly higher than

systems with CoV = 0.5 which resulted in longer queue time in the system with higher

coefficient of variation.

Regarding skewness, having positive skew indicates that the tail on the right hand side

is longer than the left hand side and the bulk of the values lie to the left of the mean. In

case of CoV = 1.4 we have even larger value for skewness which states that the higher

the value of CoV of service time distribution will result in the longer the tail of response

54 Chapter 2: Performance Modeling: Single Task Arrivals

(a) M/G/50/50+r, ρ=0.85 (b) M/G/100/100+r, ρ=0.85

(c) M/G/200/200+r, ρ=0.85 (d) M/G/500/500+r, ρ=0.85

Figure 2.17: Probability of immediate service

time distribution. In case of CoV = 0.5 the skewness has a relatively low value which

indicates that the distribution of response time is relatively symmetric; however when the

CoV =1.4 the distribution tends to be more asymmetric by degree of three. In other words,

in cloud centers with diverse services, there may exist some tasks which have a relatively

Chapter 2: Performance Modeling: Single Task Arrivals 55

long response time than others; consequently in those general purpose cloud centers, some

customers may unexpectedly experience long delay or even get blocked.

The last indicator is kurtosis which indicates whether date set are peaked or flat relative

to normal distribution with the same mean and standard deviation. As can be seen in

Tables 2.3, 2.4, 2.5 and 2.6, for CoV =0.5 kurtosis is around 1.5 showing that the values of

response time are relatively peaked around the mean in comparison to normal distribution

with the same mean and standard deviation.

However in case of CoV = 1.4 the kurtosis has the value around 12 which means that

data set (i.e., response time values) tend to have a distinct peak near the mean, decline

rather rapidly, and have heavy tails on the right side of mean. Having heavy tail on the

right hand side of response time distribution implies abrupt high traffic in the cloud center

which may lead to long delay or even blocking of incoming tasks. Like skewness, the

kurtosis values for two experiments show that in heterogeneous cloud centers it is more

difficult to maintain SLA compared to homogeneous centers.

Distinguishing between tasks and allocating dedicate buffer space to different classes of

tasks can be a way to avoid sudden long delay. In other words, establishing a few parallel

distinct homogeneous cloud centers instead of having one central heterogeneous center

could be a solution which will decrease the waiting time; this is the another reason for us to

provide performance results for cloud centers with 50 and 100 servers. As can be inferred

having many stand-by servers may help to maintain the SLA easily, though, providing such

amount of servers, which mostly are idle, is not economic for most cloud provider; however

for some mass providers e.g. Google, due to various resources of income and long term

business provisioning, it might be reasonable to even provide lots of computing and storage

56 Chapter 2: Performance Modeling: Single Task Arrivals

Table 2.3: Characterization of response time distribution, CoV =0.5, ρ=0.85

M/G/m/m+r Model Mean Std. Deviation Skewness Kurtosis

M/G/50/50 Simulation 1.99902 1.00076 1.00894 1.53956

Analytical 2.00146 0.99999 1.00000 1.50000

M/G/50/55 Simulation 2.01092 1.00389 1.00344 1.49820

Analytical 2.00861 1.00048 0.99863 1.49707

M/G/50/60 Simulation 2.02427 1.00612 1.00393 1.51463

Analytical 2.01155 1.00101 0.99739 1.49401

M/G/50/65 Simulation 2.03227 1.00433 0.99227 1.49429

Analytical 2.01239 1.00126 0.99691 1.49267

M/G/50/70 Simulation 2.03192 1.00733 1.00042 1.51530

Analytical 2.01260 1.00134 0.99679 1.49225

M/G/50/75 Simulation 2.03456 1.00856 1.00501 1.53650

Analytical 2.01264 1.00137 0.99677 1.49215

capacity, temporarily for free.

The agreement of simulation and analytical results for mentioned attributes of response

time distribution in Tables 2.3, 2.4, 2.5 and 2.6 validates the analytical model and shows

that the assumption of having v=3 (equations (2.20) and (2.21)) departures is sufficient to

obtain accurate results.

Chapter 2: Performance Modeling: Single Task Arrivals 57

Table 2.4: Characterization of Response Time Distribution, CoV =1.4, ρ=0.85

M/G/m/m+r Model Mean Std. Deviation Skewness Kurtosis

M/G/50/50 Simulation 1.99833 2.82871 2.81420 11.87201

Analytical 1.97940 2.84335 2.79543 11.78114

M/G/50/55 Simulation 2.01377 2.83533 2.81978 11.92889

Analytical 2.02784 2.81267 2.86457 12.23715

M/G/50/60 Simulation 2.04367 2.84625 2.81567 11.93122

Analytical 2.06498 2.78835 2.92330 12.61659

M/G/50/65 Simulation 2.05187 2.84596 2.82824 12.03993

Analytical 2.09241 2.76935 2.97165 12.92445

M/G/50/70 Simulation 2.06683 2.84839 2.80565 11.78003

Analytical 2.11210 2.75509 3.00941 13.16255

M/G/50/75 Simulation 2.07016 2.84512 2.80438 11.78610

Analytical 2.12597 2.74472 3.03766 13.33945

2.3.9 Ergodicity: Basic Definitions, Lemmas and Theorems

Let S = [E0, E1, E2, . . . , Em+r] be the set of all states in a Markov chain and pij(n) in-

dicates the probability of transition from state i to j with n steps. Now we state definitions,

lemmas and theorems from [30] which may be used for classifying the states in a Markov

chain:

f
(n)
i , P [first return to i occurs in n steps after leaving i]

58 Chapter 2: Performance Modeling: Single Task Arrivals

Table 2.5: Characterization of Response Time Distribution, CoV =0.5, ρ=0.85

M/G/m/m+r Model Mean Std. Deviation Skewness Kurtosis

M/G/100/100 Simulation 2.00001 0.99982 1.00085 1.50497

Analytical 2.00013 0.99999 1.00000 1.50000

M/G/100/110 Simulation 2.00607 1.00229 1.00464 1.52855

Analytical 2.00116 1.00005 0.99985 1.49967

M/G/100/120 Simulation 2.00630 0.99997 0.99494 1.47472

Analytical 2.00127 1.00007 0.99980 1.49957

M/G/100/130 Simulation 2.00813 1.00149 0.99871 1.50931

Analytical 2.00128 1.00007 0.99980 1.49956

M/G/100/140 Simulation 2.00811 1.00148 0.99865 1.50930

Analytical 2.00128 1.00007 0.99980 1.49956

M/G/100/150 Simulation 2.00811 1.00148 0.99865 1.50930

Analytical 2.00128 1.00007 0.99980 1.49956

Then, the probability of ever returning to state i is:

fi =
∞∑
n=1

f
(n)
i (2.46)

Definition (Recurrence) State i is called recurrent (or persistent) if fi = 1. if fi< 1, i is

called transient.

Considering states for which fi = 1, we may then define the mean recurrence time of i as

Mi ,
∞∑
n=1

nf
(n)
i (2.47)

Chapter 2: Performance Modeling: Single Task Arrivals 59

Table 2.6: Characterization of Response Time Distribution, CoV =1.4, ρ=0.85

M/G/m/m+r Model Mean Std. Deviation Skewness Kurtosis

M/G/100/100 Simulation 2.00017 2.82583 2.82017 11.93192

Analytical 1.99578 2.83142 2.82171 11.95564

M/G/100/110 Simulation 2.00797 2.83127 2.82095 11.87528

Analytical 2.00641 2.82405 2.83830 12.06510

M/G/100/120 Simulation 2.01185 2.83181 2.82681 11.91145

Analytical 2.00924 2.82207 2.84283 12.09488

M/G/100/130 Simulation 2.02090 2.83783 2.81866 11.80995

Analytical 2.00992 2.82159 2.84393 12.10210

M/G/100/140 Simulation 2.01651 2.83547 2.82114 11.92060

Analytical 2.01008 2.82147 2.84419 12.10381

M/G/100/150 Simulation 2.01835 2.83600 2.82775 11.99053

Analytical 2.01011 2.82145 2.84424 12.10413

This is merely the average time to return to i. With this we may then classify states even

further.

Definition (non-null) The recurrent state i is called

null if Mi =∞

non-null or (positive) if Mi <∞

There is a simple criterion for nullity in terms of the transition probabilities.

Definition (Aperiodicity) The period d(i) of a state i is defined by d(i)=gcd{n : pii(n) >

0}, the greatest common divisor of the epochs at which return is possible. We call i peri-

odic if d(i) > 1 and aperiodic if d(i) = 1.

60 Chapter 2: Performance Modeling: Single Task Arrivals

Definition (Communicability): We say i communicate with j, written i→ j, if the chain

may ever visit state j with positive probability, starting form i. That is, i→ j if pij(n) > 0

for some n ≥ 0. We say i and j intercommunicate if i → j and j→ i, in which case we

write i↔ j.

It can be seen that↔ is an equivalence relation. The state space S can be partitioned into

the equivalence classes of↔. Within each equivalence class all states are of the same type.

Definition A set C of states is called

(a) closed if pij = 0 for all i ∈ C, j /∈ C.

(b) irreducible if i↔j for all i, j ∈ C.

Definition (Ergodicity) A Markov chain is called ergodic if it is irreducible, recurrent

non-null, and aperiodic.

2.3.10 Proof of Ergodicity

Based on theorems, lemmas and definitions in Section 2.3.9 we show our Markov chain,

which we will denote as MGM-MChain for brevity, is ergodic.

Lemma 2.3.2 MGM-MChain is irreducible.

Proof MGM-MChain is a finite Markov chain with state space of S. All we need to show

is that S is closed and does not include any proper close subset. Without loss of generality

we examine the state m+ r in MGM-MChain (Fig.2.13). We are going to establish the

communicability class of the m+ r. Considering equations (2.20) and (2.21), we have:

∀k∈S , m+ r → k

Chapter 2: Performance Modeling: Single Task Arrivals 61

since there is a direct communications between m+ r and all other states with a non-

zero probability. Now we consider m+ r − 1; this state can communicate with m+ r

with the probability of pm+r−1,m+r > 0; so we can write m+ r − 1 → m+ r. Therefore

m+ r − 1↔ m+ r is held. Consequently with the same reasoning we have:

{m+ r − 2↔ m+ r − 1}, {m+ r − 3↔ m+ r − 2},

{m+ r − 4↔ m+ r − 3}, . . . , {0↔ 1} (2.48)

thus

∀k ∈ S,m+ r ↔ k (2.49)

As a result, we just showed that S is closed and does not include any proper closed subset.

So MGM-MChain is irreducible.

Lemma 2.3.3 MGM-MChain is recurrent non-null.

Proof At first we show that MGM-MChain is recurrent and then later we will deal with the

nullity. Based on recurrence definition we need to show

∀k∈S, fk = 1

By induction on system capacity, we prove above statement. For the basis of induction,

k = 1, MGM-MChain, Fig. 2.18, has the minimum capacity and the following holds:

p00 + p01 = 1 and p11 + p10 = 1

Now we examine f1:

f1 = p11 + p10

∞∑
i=0

pi00p01 = p11 + p10

∞∑
i=0

pi00(1− p00)

= p11 + p10

∞∑
i=0

pi00 − pi+1
00 = p11 + p10 ⇒ f1 = 1

(2.50)

62 Chapter 2: Performance Modeling: Single Task Arrivals

Figure 2.18: MGM-MChain for minimal capacity (k=1)

With the same reasoning we can show that f0 = 1 as well. Now we assume that for k= z

we have

f0 = f1 = . . . = fz = 1

Then we need to show that for k=z + 1 following is held:

f0 = f1 = . . . = fz = fz+1 = 1

For this configuration the MGM-MChain is exactly the same with Fig. 2.13 but here the

last state is z + 1. We can merge all the states {0, 1, . . . , z} to one state named z∗; then

accordingly MGM-MChain would be composed of two states, Fig. 2.19, in which:
pz+1,z∗ =

z∑
i=0

pz+1,i

pz∗,z∗ =
z∑
i=0

pii

And pz+1,z+1 + pz+1,z∗ = 1

pz,z+1 + pz∗,z∗ = 1

Like the basis of induction, k=1, we can show that:

fz+1 =1 and fz∗=1.

So far, we proved that MGM-MChain is recurrent. In order to show that it is non-null we

Chapter 2: Performance Modeling: Single Task Arrivals 63

Figure 2.19: Merged MGM-MChain in two states

need to have:

Mi =
∞∑
n=1

nf
(n)
i <∞

In other words, the mean return time for any states should be a finite quantity.

Lemma 2.3.4 (Ratio Test) Series
∞∑
n=0

an is absolutely convergence if [4] lim
n→∞

|an+1

an
| < 1 .

Having lemma 2.3.4 in mind, we can proceed:

lim
n→∞

|(n+ 1)f
(n+1)
i

(n)f
(n)
i

| = lim
n→∞

|n+ 1

n
| · lim

n→∞
|f

(n+1)
i

f
(n)
i

|

= 1 · lim
n→∞

|f
(n+1)
i

f
(n)
i

| = lim
n→∞

|f
(n+1)
i

f
(n)
i

| < 1

(2.51)

The last step is straight forward since

pii(n+ 1) < pii(n)

Therefore for each state, i, Mi < ∞. As a result MGM-MChain is both recurrent and

non-null.

Lemma 2.3.5 MGM-MChain is aperiodic.

Proof All states in MGM-MChain have a self loop with a non-zero probability; that is

∀k∈S, pkk > 0⇒ d(k) = 1

This means all the states are aperiodic. Consequently MGM-MChain is aperiodic.

64 Chapter 2: Performance Modeling: Single Task Arrivals

Theorem 2.3.6 MGM-MChain is ergodic.

Proof Based on Lemmas 2.3.2, 2.3.3, 2.3.5 and ergodicity definition.

2.4 Simulation

In order to validate the developed analytical model, we have built a discrete event sim-

ulator of the cloud server farm using object-oriented Petri net-based simulation engine

Artifex by RSoftDesign, Inc. [79]. Artifex is a development platform for discrete event

simulation. It uses a graphical modeling and simulation environment to model, design,

simulate, and analyze discrete event systems. Artifex is widely used to simulate optical

network protocols, control plane architecture, and switching mechanisms.

2.5 Summary of the Chapter

In this Chapter, we analyzed the performance of cloud computing center under various

assumptions, configurations and parameter settings. We developed an analytical model

for the basis of our investigation into cloud centers performance evaluation. Moreover we

simulated the cloud center to validate our analytical finding. We performed modeling using

different queuing systems based on configurations and parameters that we were focused on.

Using Artifex we simulated correspond simulation model and the results were examined

against each other.

First, we started off with a cloud center under basic assumptions: the task request arrival

process was Markovian; single arrival; service time was assumed to be generally distributed

(withCoV less than one); large number of server was assumed; we also supposed that every

Chapter 2: Performance Modeling: Single Task Arrivals 65

task will go through a facility node (servers) and then leaves the system (i.e., there is no

any feedback among servers). For the first step we consider a cloud center with infinite

input buffer capacity for task requests.

Second, we added the assumption of having finite capacity of input buffer as well as

service time with CoV more than one. We have obtained the most important performance

characteristics: mean number of tasks in system, mean response time, mean waiting time,

blocking probability and probability of immediate service; we also extract the probabil-

ity distribution of response time. By leveraging probability distribution of response time,

higher moment related performance indicators such as standard deviation, skewness and

kurtosis has also been obtained.

Numerical and simulation results show that the proposed analytical model provides an

accurate results for all above-mentioned performance indicators. Our results also indicate

that a cloud center that accommodates heterogeneous services may impose longer waiting

time for its clients compared to its homogeneous equivalent with the same traffic intensity.

As a result, fulfilling the terms of SLA may be satisfied with lower over-provisioning of

resources in a cloud centers that accept a certain type of task request as opposed to general

purpose cloud center (heterogeneous services). On the other hand, our finding suggested

that cloud consumers had better to submit their requests in the cloud centers that deal with

their type of request.

Chapter 3

Performance Modeling: Batch

(super-task) Arrivals

In Chapter 2, we have investigated the performance modeling of cloud centers under

single arrivals. In this Chapter, we extend our model to accommodate batch arrivals [43].

A preliminary version of this analysis, including the comprehensive characterization of

response time, was proposed in [46]. This Chapter is organized as follows: we survey

related work for batch arrivals in Section 3.1. Our analytical model for batch arrivals is

described in Section 3.2. In Section 3.2 the approximate Markov chain is presented. We

present numerical validation in Section 3.4. The summery of the Chapter is outlined in

Section 3.6.

66

Chapter 3: Performance Modeling: Batch (super-task) Arrivals 67

3.1 Related Work

To the best of our knowledge, there is no published work in which the performance

evaluation of a cloud center has been investigated under batch task arrivals. We employ

M [x]/G/m/m + r queuing system in order to deal with the performance evaluation of

a cloud center under batch arrivals of tasks. We assume generally distributed batch size,

Markovian arrival process, generally distributed service time, large number of servers and

a finite capacity of input buffer for task requests. There are only a handful of research

works in literature that investigated a queuing system with batch arrival as well as generally

distributed service time:

An upper bound for the mean queue length and lower bounds for the delay probabilities

(that of an arrival batch and that of an arbitrary task in the arrival batch) was described

in [105]. An approximate formula is also developed for the general batch-arrival queue

GI [x]/G/m. In spite of the simplicity, the approach is accurate enough for small batch

sizes, up to 3, as well as small number of servers (less than 10).

In [18], the authors proposed an approximation method for the computation of the

steady-state distribution of the number of tasks in queue as well as the moments of the

waiting time distribution. They examined both hypo-exponential and hyper-exponential

distribution family for service time, which is necessary for modeling a dynamic system

such as cloud farms; however they just performed numerical results for a system with up to

seven server and there is no result or indication about the efficiency of the method in case

of larger number of servers or a system with finite capacity.

Another approximate formula was proposed in [14]. The authors presented an approx-

imate formula for the steady-state average number of tasks in the M [x]/G/m queuing sys-

68 Chapter 3: Performance Modeling: Batch (super-task) Arrivals

tem. The derivation of the formula is based on a heuristic argument whereby a reformu-

lation of the number of tasks in M [x]/G/1 is extended to the multi-server queue. From a

computational viewpoint, the approach is simple to apply, though, the relative percentage

error incurred seem to be unavoidable when the number of server is large, the mean batch

size is small or the coefficient of variation of service time is larger than one.

A diffusion approximation for anM [x]/G/m queue was developed in [56]. The authors

derived an approximate formula for the steady-state distribution of the number of tasks in

the system, delay probability and mean queue length. However, the diffusion approach

gives unacceptably large errors when batch size is larger than 3.

Overall, existing methods are not well suited to the analysis of cloud center where the

number of servers may potentially be huge, the distribution of service times is unknown,

and batch arrival of requests is allowed.

3.2 Approximate Analytical Model

A system with above mentioned description can be modeled as an M [x]/G/m/m + r

queuing system. In this system, super-task (i.e., a batch request) arrivals follow a Poisson

process so that super-task inter-arrival time A is exponentially distributed with a rate of 1
λ

.

We denote its CDF with A(x) = Prob[A < x] and its pdf with a(x) = λe−λx; the LST of

this pdf is

A∗(s) =

∫ ∞
0

e−sxa(x)dx =
λ

λ+ s
.

Let gk be the probability that the super-task size is equal to k, k = 1, 2, ...,MBS, in

which MBS is the maximum batch size which, for obvious reasons, must be finite; both gk

and MBS depend on user application. Let g and Πg(z) be the mean value and the PGF of

Chapter 3: Performance Modeling: Batch (super-task) Arrivals 69

the task burst size, respectively.

Πg(z) =
MBS∑
k=1

gkz
k

g = Π(1)
g (1)

(3.1)

Tasks within a super-task have service times which are identically and independently

distributed according to a general distribution B, with a mean service time of b = µ−1. The

CDF of the service time is B(x) = Prob [B < x] and its pdf is b(x), while the correspond-

ing LST is

B∗(s) =

∫ ∞
0

e−sxb(x)dx.

Residual task service time, denoted with B+, is the time interval from an arbitrary point

during a service interval to the end of that interval. Elapsed task service time, denoted with

B−, is the time interval from the beginning of a service interval to an arbitrary point within

that interval. Residual and elapsed task service times have the same probability distribution

[86], the LST of which can be calculated as

B∗+(s) = B∗−(s) =
1−B∗(s)

sb
(3.2)

The traffic intensity may be defined as

ρ ,
λg

mµ
(3.3)

For practical reasons, we assume that ρ < 1.

3.3 Approximation by Embedded Processes

To solve this model, we adopt a technique similar to embedded Markov chain in [86,

57]. The problem stems from the fact that ourM [x]/G/m/m+r system is non-Markovian,

70 Chapter 3: Performance Modeling: Batch (super-task) Arrivals

Time

Number of Tasks in

the System Embedded semi-Markov process

Embedded Markov Process

Original Process
Task Departure

Super-task Arrival

Figure 3.1: A sample path of the original process, embedded semi-Markov process, and
embedded Markov process.

so we propose an approximate solution with two steps.

First, we identify a semi-Markov process, hereafter referred to as ESMP, embedded

in the original process between two arrivals. To determine the behavior of the embedded

semi-Markov process, we need to determine the state residence times.

Second, we introduce an approximate embedded Markov process, hereafter referred

to as aEMP, that models the original process in a discrete manner. In the aEMP, task

departures that occur between two successive super-task arrivals (of which there can be

zero, one, or several) are considered to occur at the times of super-task arrivals.

Therefore, the aEMP models the the original process only at the moments of super-

task arrivals. Since we can’t determine the exact moments of task departures, the counting

process is only approximate, but the approximation error is rather low and decreases with

an increase in load, as will be discussed below.

A sample path of the three processes: the original one, the embedded semi-Markov, and

Chapter 3: Performance Modeling: Batch (super-task) Arrivals 71

Figure 3.2: The approximate embedded Markov chain (aEMC) associated with the approx-
imate embedded Markov process (aEMP).

the approximate embedded Markov one, is shown schematically in Fig. 3.1.

The approximate embedded Markov chain, hereafter referred to as aEMC, that corre-

sponds to aEMP is shown in Fig. 3.2. States are numbered according to the number of tasks

currently in the system (which includes both those in service and those awaiting service).

For clarity, some transitions are not fully drawn.

Let An and An+1 indicate the moment of nth and (n + 1)th super-task arrivals to the

system, respectively, while qn and qn+1 indicate the number of tasks found in the system

immediately before these arrivals; this is schematically shown in Fig.3.3. If k is the size of

super-task and vn+1 indicates the number of tasks which depart from the system between

72 Chapter 3: Performance Modeling: Batch (super-task) Arrivals

servers

An An+1 super-task
arrivals

task
departures

time

qn tasks
in system

qn+1 tasks
in system

Vn+1 tasks serviced,
departed from system

Figure 3.3: Observation points.

An and An+1, then

qn+1 = qn − vn+1 + k (3.4)

To solve the aEMC, we need to calculate the corresponding transition probabilities, defined

as

P (i, j, k) , Prob [qn+1 = j|qn = i and Xg = k] .

In other words, we need to find the probability that i + k − j customers are served during

the interval between two successive super-task arrivals. Such counting process requires

the exact knowledge of system behavior between two super-task arrivals. Obviously for

j > i+ k,

P (i, j, k) = 0 (3.5)

since there are at most i+k tasks present between the arrival of An and An+1. For calculat-

ing other transition probabilities in the aEMC, we need to identify the distribution function

of residence time for each state in ESMP. Let us now describe these residence times in

Chapter 3: Performance Modeling: Batch (super-task) Arrivals 73

more detail.

• Case 1: The state residence time for the first departure is remaining service time,

B+(x), since the last arrival is a random point in the service time of the current task.

• Case 2: If there is a second departure from the same physical machine (PM), then

clearly the state residence time is the service time (B(x)).

• Case 3: No departure between two super-task arrivals as well as the last departure

before the next arrival make the state residence time exponentially distributed with

the mean value of 1
λ

.

• Case 4: If ith departure is from another PM, then the CDF of state residence time

is Bi+(x). Consider the departure D21 in Fig. 3.4, which takes place after departure

D11. Therefore the moment of D11 could be considered as an arbitrary point in the

remaining service time of the task in PM #2, so the CDF of residence time for the

second departure is B2+(x). As a result, the LST of B2+(x) is the same as B∗+(s),

similar to (3.2) but with an extra recursion step. Generally, the LSTs of residence

times between subsequent departures from different PMs may be recursively defined

as follow

B∗i+(s) =
1−B∗(i−1)+(s)

s · b(i−1)+

, i = 1, 2, 3, · · · (3.6)

in which b(i−1)+ = [− d
ds
B∗(i−1)+(s)]s=0. To maintain the consistency in notation we

also define

b0+ = b

B∗0+(s) = B∗(s)

B∗1+(s) = B∗+(s)

74 Chapter 3: Performance Modeling: Batch (super-task) Arrivals

servers

An An+1 super-task
arrivals

server 2
D21server 1

D11

D22

B+(x) B2+(x) B(x) A(x)

A(x)

task
departures

time

Figure 3.4: System behavior between two observation points.

Let Rk(x) denotes the CDF of residence times at state k in ESMP:

Rk(x) =



B+(x), Case 1

B(x), Case 2

A(x), Case 3

Bi+(x), Case 4 i = 2, 3, · · ·

(3.7)

3.3.1 Departure Probabilities

To find the elements of the transition probability matrix, we need to count the number

of tasks departing from the system in the time interval between two successive super-task

arrivals. Therefore at first step, we need to calculate the probability of having k arrivals dur-

ing the residence time of each state. Let N (B+), N (B) and N (Bi+), where i = 2, 3, . . .,

indicate the number of arrivals during time periods B+(x), B(x) and Bi+(x), respectively.

Chapter 3: Performance Modeling: Batch (super-task) Arrivals 75

Due to Poisson distribution of arrivals, we may define the following probabilities:

αk , Prob[N (B+) = k] =

∫ ∞
0

(λx)k

k!
e−λxdB+(x)

βk , Prob[N (B) = k] =

∫ ∞
0

(λx)k

k!
e−λxdB(x)

δik , Prob[N (Bi+) = k] =

∫ ∞
0

(λx)k

k!
e−λxdBi+(x)

(3.8)

We are also interested in the probability of having no arrivals; this will help us calculate

the transition probabilities in the aEMC.

Px = α0 , Prob[N (B+)= 0] =

∫ ∞
0

e−λxdB+(x)= B∗+(λ)

Py = β0 , Prob[N (B)= 0] =

∫ ∞
0

e−λxdB(x)= B∗(λ)

Pix = δ0 , Prob[N (B2+)= 0] =

∫ ∞
0

e−λxdBi+(x)= B∗i+(λ)

Pxy = PxPy

(3.9)

Note that P1x = Px. we may also define the probability of having no departure between

two super-task arrivals. Let A be an exponential random variable with the parameter of

λ, and let B+ be a random variable which is distributed according to B+(x) (remaining

service time). The probability of having no departures is

Pz = Prob [A < B+]

=

∫ ∞
x=0

P{A < B+|B+ = x }dB+(x)

=

∫ ∞
x=0

P{A < x }dB+(x)

=

∫ ∞
x=0

(∫ x

y=0

λe−λydy

)
dB+(x)

=

∫ ∞
x=0

[
1− e−λy

]x
y=0

dB+(x)

=

∫ ∞
0

(1− e−λx)dB+(x)

= 1−B∗+(λ)

= 1− Px

(3.10)

76 Chapter 3: Performance Modeling: Batch (super-task) Arrivals

Using probabilities Px, Py, Pxy, Pix and Pz we may define the transition probabilities

for aEMC. Note that due to tractability we use only Px, P2x and P3x that is the computation

of equation (3.6) up to 3 recursions. However under moderate high load (ρ < 0.9) it is

unlikely to have more than 3 departures from a single PM between two arrivals.

3.3.2 Transition Matrix

The transition probabilities may be depicted in the form of a one-step transition matrix,

as shown Fig. 3.5 where rows and columns correspond to the number of tasks in the system

immediately before a super-task arrival (i) and immediately after the next super-task arrival

(j), respectively. As can be seen, four operating regions may be distinguished, depending

on whether the input queue is empty or non-empty before and after successive super-task

arrivals. Each region has a distinct transition probability equation that depends on current

state i, next state j, super-task size k, and number of departures between two super-task

arrivals. Note that, in all regions, P (i, j, k) = Pz if i+ k = j.

Region 1

In this region, the input queue is empty and remains empty until next arrival, hence

the transitions originate and terminate on the states labeled m or lower. Let us denote the

number of tasks which depart from the system between two super-task arrivals as w(k) =

i+ k − j. For i, j ≤ m, the transition probability is

Chapter 3: Performance Modeling: Batch (super-task) Arrivals 77

(0, 0)

(m, 0)

(m+1, 0)

(m+r, 0)

from

state

(i,)

to state (, j)

(0, 1)

(m, 1)

(m+1, 1)

(m+r, 1)

(0, m)

(m, m)

(m+1, m)

(m+r, m)

(0, m+1)

(m, m+1)

(m+1, m+1)

(m+r, m)

(0, m+r)

(m, m+r)

(m+1, m+r)

(m+r, m+r)

1 2

34

PLL(i, j, k) PLH(i, j, k)

PHH(i, j, k)PHL(i, j, k)

Figure 3.5: One-step transition probability matrix: range of validity for P (i, j, k) equations.

PLL(i, j, k) =



min(i,w(k))∑
z=0

(
i+ k

w(k)

)
Pw(k)
x (1− Px)j, if i+ k ≤ m

min(i,w(k))∑
z=i+k−m

(
i

z

)
P z
x (1− Px)i−z·(

k

w(k)− z

)
Pw(k)−z
xy (1− Pxy)z−i+j, if i+ k > m

(3.11)

Region 2

In this region, the queue is empty before the transition but non-empty afterward, hence

i ≤ m, j > m. This means that the arriving super-task was queued because it could not

be serviced immediately due to the insufficient number of idle PMs. The corresponding

transition probabilities are

78 Chapter 3: Performance Modeling: Batch (super-task) Arrivals

PLH(i, j, k) = Π
w(k)
s=1 [(i− s+ 1)Psx] · (1− Px)i−w(k) (3.12)

Number of idle PMs

To calculate the transition probabilities for regions 3 and 4, we need to know the proba-

bility of having n idle PMs out of m. Namely, due to the total rejection policy, a super-task

may have to wait in the queue even when there are idle PMs: this happens when the number

of idle PMs is smaller than the number of tasks in the super-task at the head of the queue.

To calculate this probability, let us consider an d Poisson batch arrival process in which the

batch size is a generally distributed random variable, and each arriving batch is stored in

a finite queue. Storing the arrival batches in the queue will be continued until either the

queue gets full or the last arrival batch can’t fit in. If the queue size is t, the mean batch size

is g, and the maximum batch size is equal to MBS, what is the probability, Pi(n), of having

n unoccupied spaces in the queue? Unfortunately, this probability can’t be computed ex-

actly, and an approximate solution is needed. To this end, we have simulated the queue size

for different mean batch sizes, using the object-oriented Petri net-based simulation engine

Artifex by RSoftDesign, Inc. [79]. We have fixed the queue size at m = 200, and ran the

simulation experiment one million times; the resulting probability distribution is shown in

Fig. 3.6.

The shape indicates an exponential dependency so we have empirically found the pa-

rameters that give the best fit, as shown in Table 3.1, for different values of mean batch

size. In all cases, the approximation error remains below 0.18%.

This allows us to calculate the transition probabilities for regions 3 and 4 in the transi-

Chapter 3: Performance Modeling: Batch (super-task) Arrivals 79

Figure 3.6: Probability of having n idle PMs (Pi(n))s for different mean batch sizes.

Table 3.1: Parameters for optimum exponential curves aebx.

batch size

parameter 2 4 6 8

a 0.5154051 0.2725053 0.1839051 0.1393975

b -0.6918772 -0.2913967 -0.1825455 -0.1334660

tion probability matrix.

Region 3

Region 3 corresponds to the case where the queue is not empty before and after the

arrivals, i.e., i, j > m. In this case, transitions start and terminate at states above m in

Fig. 3.2, and the state transition probabilities can be computed as

80 Chapter 3: Performance Modeling: Batch (super-task) Arrivals

PHH(i, j, k) '
m∑

ψ=(m−MBS+1)

min (w(k),ψ)∑
s1=min(w(k),1)

(
ψ

s1

)
P s1
x (1− Px)ψ−s1 · Pi(m− ψ)·

m−ψ+s1∑
δ=max(0,m−ψ+s1−MBS+1)

min(δ,w(k)−s1)∑
s2=min(w(k)−s1,1)

(
δ

s2

)
P s2

2x(1− P2x)
δ−s2 · Pi(m− ψ + s1 − δ)·

m−ψ+s1−δ+s2∑
φ=max(0,m−ψ+s1−δ+s2−MBS+1)

(
φ

w(k)− s1 − s2

)
P
w(k)−s1−s2
3x (1− P3x)

φ−w(k)+s1+s2·

Pi(m− ψ + s1 − δ + s2 − φ)

(3.13)

Region 4

Finally, region 4 corresponds to the situation where the queue is non-empty at the time

of the first arrival, but it is empty at the time of the next arrival: i > m, j ≤ m. The

transition probabilities for this region are

PHL(i, j, k) '
m∑

ψ=(m−MBS+1)

min (w(k),ψ)∑
s1=min(0,ψ−j)

(
ψ

s1

)
P s1
x (1− Px)ψ−s1 · Pi(m− ψ)·

m−ψ+s1∑
δ=max(0,m−ψ+s1−MBS+1)

min(δ,w(k)−s1)∑
s2=min(w(k)−s1,ψ−j)

(
δ

s2

)
P s2

2x(1− P2x)
δ−s2 · Pi(m− ψ + s1 − δ)·

m−ψ+s1−δ+s2∑
φ=max(0,m−ψ+s1−δ+s2−MBS+1)

(
φ

w(k)− s1 − s2

)
P
w(k)−s1−s2
3x (1− P3x)

φ−w(k)+s1+s2·

Pi(m− ψ + s1 − δ + s2 − φ)

(3.14)

Chapter 3: Performance Modeling: Batch (super-task) Arrivals 81

3.3.3 Equilibrium Balance Equations

We are now ready to set the balance equations for the transition matrix:

πi =
m+r∑

j=max[0,i−MBS]

πjpji , 0 ≤ i ≤ m+ r (3.15)

augmented by the normalization equation

m+r∑
i=0

πi = 1. (3.16)

The total number of equations is m + r + 2, but there are only m + r + 1 variables

[π0, π1, π2, . . . , πm+r]. Therefore, we need to remove one of the equations in order to ob-

tain the unique equilibrium solution (which exists if the corresponding Markov chain were

ergodic). A wise choice would be the last equation in (3.15) which holds the minimum

amount of information about the system in comparison with the others. Here, the steady

state balance equations can’t be solved in closed form, hence we must resort to a numerical

solution.

3.3.4 Distribution of the Number of Tasks in the System

Once we obtain the steady state probabilities we are able to establish the PGF for the

number of tasks in the system at the time of a super-task arrival:

Π(z) =
m+r∑
k=0

πzz
k (3.17)

Due to batch arrivals, the PASTA property doesn’t hold; thus, the PGF Π(z) for the

distribution of the number of tasks in the system at an arbitrary time is not the same as

the PGF P (z) for the distribution of the number of tasks in the system at the time of a

super-task arrival. To obtain the former, we employ a two-step approximation technique

82 Chapter 3: Performance Modeling: Batch (super-task) Arrivals

with an embedded semi-Markov process and an approximate embedded Markov process,

as explained above. The aEMP imitates the original process but it will be updated only at

the moments of super-task arrivals. Let Hk(x) be the CDF of the residence time that aEMP

stays in the state k:

Hk(x) , Prob[tn+1 − tn ≤ x | qn = k] = 1− eλx, k = 0, 1, 2, ...,m+ r (3.18)

which in our system does not depend on n. The mean residence time in state k is

hk =

∫ ∞
0

[1−Hk(x)]dx =
1

λ
, k = 0, 1, 2, ...,m+ r (3.19)

and the steady-state distribution in aEMP is given by [86]

psmk =
πkhk∑m+r
j=0 πjhj

=
πk

λ
∑m+r

j=0 πj1/λ
= πk (3.20)

where {πk; k = 0, 1, ... ,m+r} is the distribution probability at aEMC. So the steady-state

probability of aEMP is identical with the embedded aEMC. We now define the CDF of the

elapsed time from the most recent observing point looking form an arbitrary time by

H−k (y) =
1

hk

∫ y

0

[1−Hk(x)]dx, k = 0...m+ r (3.21)

The arbitrary-time distribution is given by

pi =
m+r∑
j=i

psmj

∫ ∞
0

Prob[changes in y that bring the state from j to i] dH−j (y) =
m+r∑
j=i

πjP (j, i, 0)

(3.22)

The PGF of the number of tasks in system is given by

P (z) =
m+r∑
i=0

piz
i (3.23)

Mean number of tasks in the system, then, obtained as

p = P
′
(1) (3.24)

Chapter 3: Performance Modeling: Batch (super-task) Arrivals 83

3.3.5 Blocking Probability

Since arrivals are independent of buffer state and the distribution of number of tasks

in the system was obtained, we are able to directly calculate the blocking probability of a

super-task in the system with buffer size of r:

Pb(r) =
MBS−1∑
k=0

[
MBS∑
i=0

pm+r−i−k(1−G(i))

]
· Pi(k) (3.25)

The buffer size, rε, required to keep the blocking probability below the certain value, ε, is:

rε = {r ≥ 0 | Pb(r) ≤ ε & Pb(r − 1) > ε} (3.26)

3.3.6 Probability of Immediate Service

We are also interested in the probability that a super-task will get service immediately

upon arrival, without any queueing. In this case, the response time would be equal to the

service time:

Pnq =
MBS−1∑
k=0

[
m−k−MBS∑

j=0

pj +
m−k−1∑

i=m−k−MBS+1

piG(m− k − i)

]
· Pi(k) (3.27)

3.3.7 Distribution of Response and Waiting time in Queue

Let W denote the waiting time in the steady state, and similarly let W (x) and W ∗(s)

be the CDF, of W and its LST, respectively. For the M [x]/G/m/m + r systems the queue

length has the same distribution as W , the number of tasks which arrive during the waiting

time:

Q(z) = W ∗(λe(1− z)) (3.28)

in which λe = λ(1− Pb).

84 Chapter 3: Performance Modeling: Batch (super-task) Arrivals

The left hand side of (3.28) in our system can be calculated as

Q(z) =
m∑

ψ=(m−MBS+1)

[
ψ−1∑
k=0

pk +
m+r∑
k=ψ

pkz
ψ−k

]
· Pi(m− ψ) (3.29)

Hence, we have

W ∗(s) = Q(z)|z=1−(s/λe) = Q(1− s/λe) (3.30)

Moreover, the LST of response time is

T ∗(s) = W ∗(s) B∗(s) (3.31)

in which the B∗(s) is the LST of service time. The i-th moment, t(i), of the response time

distribution is given by

t(i) =

∫ ∞
0

xidT (x) = i

∫ ∞
0

xi−1[1− T (x)]dx = (−1)iT ∗(i)(0) i = 2, 3, 4, . . .

(3.32)

Using the moments we can calculate standard deviation as [38]:

σT =

√
t(2) − t2 (3.33)

skewness as:

sk =
t(3) − 3tσ2

T − t
3

σ3
T

(3.34)

and kurtosis as:

ku =
t(4) − 4t(3)t− 6t(2)t

2 − 3t
4

σ4
T

− 3 (3.35)

3.4 Numerical Validation

The resulting balance equations of analytical model have been solved using Maple 13

from Maplesoft, Inc. [66]. To validate the analytical solution, we have also built a discrete

Chapter 3: Performance Modeling: Batch (super-task) Arrivals 85

event simulator of the cloud center using the Artifex engine [79]. We have configured a

cloud center with m = 200 PMs and an input queue with r = 100 task slots. Traffic

intensity was set to ρ = 0.85, which may seem too high but could easily be reached in

private cloud centers or public centers of small/medium size providers. Task service time

is assumed to have Gamma distribution, while the distribution of batch size is assumed to be

Geometric. We set the maximum batch size as MBS = 3
g

+1 in which g is the probability of

success in the Geometric distribution. Note that in real cloud centers there is an upper limit

for the number of PMs requested by a customer. Gamma distribution is chosen because it

allows the coefficient of variation to be set independently of the mean value. Two values

are used for the coefficient of variation: CoV = 0.5, which results in hypo-exponentially

distributed service times, and CoV = 1.4, which results in hyper-exponentially distributed

service times. In all plots, the simulation and analytical results are labeled with Sim and

AM, respectively.

Diagrams in Fig. 3.7 show main performance indicators of this cloud system: mean

number of tasks in the system, mean queue size, blocking probability, and the probability

that a super-task will receive immediate service (i.e., that there will be a sufficient number

of idle PMs to accommodate the super-task immediately upon arrival). As can be seen, the

queue size increases with mean batch size whereas the mean number of tasks in the system

decreases with it. This may be attributed to the total rejection policy, which lets some PMs

to remain idle even though there exist some super-tasks in the queue. As might be expected,

the blocking probability increases as the size of batches increases, while the probability of

immediate service (which might be termed availability) decreases slowly. Nevertheless,

the probability of immediate service is above 0.75 in the observed range of mean batch

86 Chapter 3: Performance Modeling: Batch (super-task) Arrivals

(a) Mean number of tasks in the system. (b) Mean queue length.

(c) Blocking probability. (d) Probability of getting immediate service.

Figure 3.7: Performance measures as function of mean batch size of super-tasks.

sizes, which means that more than 75% of user requests will be serviced immediately upon

arrival, even though the total traffic is ρ = 0.85, which is rather high.

We have also computed the system response time and queue waiting time for super-

tasks. Note that, because of the total rejection policy explained above, the response and

waiting times for super-tasks are identical for all individual tasks within the super-task.

Chapter 3: Performance Modeling: Batch (super-task) Arrivals 87

(a) Response time (b) Waiting time in queue

Figure 3.8: Response time and waiting time in queue.

As depicted in Fig. 3.8, response time—which is the sum of waiting time and service

time— and waiting time slowly increase with an increase in mean batch size. This may be

attributed to the fact that larger mean batch size leads to larger super-tasks, which are more

likely to remain longer in the queue before the number of idle PMs becomes sufficiently

high to accommodate all of its individual tasks.

In all of the experiments described above, the agreement between analytical and sim-

ulation results is very good, which confirms the validity of the proposed approximation

procedure using eMPS and aEMP/aEMC.

Not unexpectedly, performance at hyper-exponentially distributed service times (CoV =

1.4) is worse in general than that at hypo-exponential ones (CoV = 0.5). To obtain fur-

ther insight into cloud center performance, we have also calculated the higher moments

of response time which are shown in Fig. 3.9. As can be seen, standard deviation, shown

in Fig 3.9(a), increases as the mean batch size increases, and the response time is more

88 Chapter 3: Performance Modeling: Batch (super-task) Arrivals

(a) Standard Deviation. (b) Skewness.

(c) Kurtosis.

Figure 3.9: Higher moment related performance metrics.

dispersed when the service time of tasks is hyper-exponentially distributed.

With respect to the higher moment-based measure, let us note that skewness is a mea-

sure of symmetry of a distribution around the mean (a value of zero indicates a fully sym-

metric distribution, while positive/negative values indicate that the tails are longer on the

left/right hand side of the mean, respectively), while kurtosis indicates whether the distri-

bution is more ‘peaked’ or ‘flat’ with respect to the normal distribution with the same mean

and standard deviation. As can be seen, the skewness, shown in Fig. 3.9(b), is rather high,

Chapter 3: Performance Modeling: Batch (super-task) Arrivals 89

and increases with batch size and/or CoV of service time. This indicates that, the higher

the CoV of service time distribution, the longer the tail of the response time distribution

will be. As can be seen from Fig. 3.9(c), kurtosis is high which indicates the response time

distribution is relatively peaked around the mean. In addition, the kurtosis values obtained

for CoV = 1.4 is noticeably higher than the corresponding values for CoV = 0.5. These

results imply that, in practice, the distribution of response time will exhibit a rapid increase

with a very pronounced mean value, and then decrease slowly with a rather long tail. A

long tail means that some super-tasks may experience much longer response time than the

others, esp. when the input traffic consists of super-tasks with widely varying service times

and/or large number of tasks. Consequently, a non-negligible portion of super-tasks will

experience extremely long delays, or even blocking, which may be unacceptable for cloud

operators, in private as well as in public clouds, and ways to improve performance must be

sought.

3.5 The Impact of Homogenization

The results presented above indicate that the response time is very sensitive to the coef-

ficient of variation of task service times and the number of tasks in a super-task. Therefore,

some way to keep these values within certain bounds may help improve performance of the

cloud center. Since users can’t be forced to submit requests with prescribed characteristics,

the cloud provider may try to do so internally. One way of ‘taming’ the requests is to sep-

arate the input super-task stream into two or more sub-streams that are better behaved, and

then feed those sub-streams into separate sub-clouds. In this manner, a single ‘homoge-

neous’ cloud center, shown in Fig. 3.10(a), is to be partitioned into two or more sub-clouds

90 Chapter 3: Performance Modeling: Batch (super-task) Arrivals

1 2 m-1 m

cloud center

(a) Single, heterogeneous cloud

center.

1 2 m/2-1 m/2 1 2 m/2-1 m/2

splitter

Cloud sub-center 1 Cloud sub-center 2

(b) Two homogeneous cloud sub-centers.

Figure 3.10: Two configurations of the cloud computing center.

which deal with more ‘homogeneous’ request streams, Fig. 3.10(b). Partitioning should be

made on the basis of the coefficient of variation of task service times and/or on the basis of

the size of (i.e., the number of tasks within) the super-task.

To validate this approach, we carried out two experiments with a cloud center with

m = 200 PMs and r = 100 slots in the input task buffer. In both cases, the incoming

super-tasks have mean number of tasks of 2 and Gamma-distributed task service times.

First, super-tasks are partitioned according to the CoV of their task service times. We

assume two types of super-tasks arriving at the cloud center: super-tasks in which task ser-

vice times are hypo-exponentially distributed withCoV = 0.5 and super-tasks having tasks

with hyper-exponentially distributed service time with CoV = 2. The primary configura-

tion kept both incoming super-task streams in the same queue and fed them to the original

cloud center. Then, the incoming streams were split, and the resulting sub-streams were

fed to sub-clouds withm′ = 100 PMs and an input buffer with r′ = 50 task slots. However,

Chapter 3: Performance Modeling: Batch (super-task) Arrivals 91

(a) Waiting time. (b) Probability of immediate service.

Figure 3.11: One heterogeneous center versus two homogeneous sub-clouds; homogeniza-
tion is based on CoV of tasks’ service time.

the separation was not complete, and partial server sharing was implemented: namely, if

one of the sub-clouds could not accommodate the super-task at the head of the queue but

the other sub-cloud could, the super-task was routed to the other sub-cloud. The results,

shown in Fig. 3.11(a), confirm that the aggregate waiting time is indeed lower in the case

of homogeneous sub-centers than in the case of one heterogeneous center, despite its larger

capacity. This is further confirmed by the diagrams in Fig. 3.11(b) that show the probability

of immediate service; again, homogeneous sub-clouds provide better performance than a

single but heterogeneous cloud. Similar results, albeit in a different setting, were reported

in [9, 82].

In our second experiment, incoming super-tasks were partitioned according to their

size, as follows. Super-tasks with size of g+2 (where g denotes mean super-task size) were

sent to one of the sub-clouds, while those with larger size were sent to another. As above,

partial sharing of sub-clouds was allowed. As can be seen from the diagrams Fig. 3.12,

92 Chapter 3: Performance Modeling: Batch (super-task) Arrivals

homogenization of this type also leads to better performance in terms of both mean waiting

time and probability of immediate service.

(a) Waiting time. (b) Probability of immediate service.

Figure 3.12: One heterogeneous center versus two homogeneous sub-clouds; homogeniza-
tion is based on super-tasks’ size.

From the results of these experiments, we may conclude that a simple partitioning of in-

put requests may help cloud providers improve customer-perceived performance. Reduced

waiting times also indicate that the utilization of cloud PMs is better, which is advanta-

geous for the cloud provider. Moreover, economic incentives (such as appropriate pricing

policies) should be considered to encourage customers to break down super-tasks (batches)

into the smallest possible size; these issues will be the topic of our future work.

3.6 Summary of the Chapter

In this Chapter, we have described the first analytical model for performance evalua-

tion of a cloud computing center under Poisson batch arrivals with generally distributed

Chapter 3: Performance Modeling: Batch (super-task) Arrivals 93

task sizes and generally distributed task service times, under a total acceptance/rejection

policy. The model is based on a two-stage approximation technique where the original

non-Markovian process is first modeled with an embedded semi-Markov process, which is

then modeled by an approximate embedded Markov process but only at the time instants of

super-task arrivals; the number of departures between two successive super-task arrivals is

counted approximately. This technique provides quite accurate computation of important

performance indicators such as the mean number of tasks in the system, queue length, mean

response and waiting time, blocking probability and the probability of immediate service.

While the model is approximate, its accuracy is more than sufficient under a wide range of

input parameter values; in particular, it allows accurate modeling of cloud centers with a

large number of PMs.

Our findings also show that cloud centers which allow requests with widely varying ser-

vice times may experience longer waiting time and lower probability of getting immediate

service for its clients. A simple partitioning-based homogenization in which super-tasks

with similar characteristics are grouped into separate streams and serviced by separate sub-

clouds, is shown to provide superior performance with respect to the case where all requests

are serviced by a single cloud center. Partitioning may be done on the basis of super-task

size and/or coefficient of variation of task service times. In this manner, cloud customers

may obtain better service from cloud centers specifically geared to handling their type of

services, and they may expect generally better performance if their request are submitted

in super-tasks with the minimum possible number of required PMs.

Chapter 4

Performance Modeling: Virtualized

Environment

In chapter 3, we have incorporated the batch arrivals to our performance model which

means a super-task may request multiple physical machines (PM) at once. Therefore, the

proposed performance model did not support single PM sharing among super-tasks. In this

chapter, however, we introduce the concept of virtualized PM to our performance model

to increase the fidelity of the model to the real Infrastructure-as-a-Service (IaaS) cloud

centers [47]. This chapter is organized as follows: in section 4.1, a virtualized environment

and VMware VMmark performance score are elaborated. Our analytical model is described

in section 4.2. We present numerical validation in section 4.3. The summery of the chapter

is outlined in section 3.6.

94

Chapter 4: Performance Modeling: Virtualized Environment 95

4.1 Virtualized Physical Machines

Performance evaluation is particularly challenging in scenarios where virtualization is

used to provide a well defined set of computing resources to the users [22], and even more

so when the degree of virtualization, i.e., the number of virtual machines (VMs) running on

a single physical machine (PM) is high, at the current state of technology, means well over

hundred of VMs. For example, the recent VMmark benchmark results by VMware [97],

a single physical machine can run as many as 35 tiles or about 200 VMs with satisfactory

performance. Table 4.1 shows the workloads and applications being run with each VMmark

tile. A tile consists of six different VMs that imitate a typical data center environment. Note

that the standby server virtual machine does not run an application; however, it does run

an operating system and is configured as one CPU with a specified amount of memory and

disk space [96].

Table 4.1: VMmark workload summary per tile (adapted from [33]).

VM Benchmark Operating System VM Specification Metric

Database Server MySQL SUSE Linux ES x64 2 vCPUs 2GB RAM Commit/min

Mail Server LoadSIM MS Win. 2003 x86 2 vCPUs 1GB RAM Action/min

Java Server SPECjbb2005 MS Win. 2003 x64 2 vCPUs 1GB RAM Order/min

File Server Dbench SUSE Linux ES x86 1 vCPUs 256MB RAM MB/sec

Web Server SPECjbb2005 SUSE Linux ES x64 2 vCPUs 512MB RAM Access/min

Standby N/A MS Win. 2003 x86 1 vCPUs 256MB RAM N/A

We assume that the cloud center consists of many physical machines, each of which

can host a number of virtual machines, as shown in Fig. 4.1. Incoming requests are routed

96 Chapter 4: Performance Modeling: Virtualized Environment

in

super-task(s)

PM #1

Hardware

Hypervisor layer

VM

1

VM

2

VM

3

VM

m-1

VM

m
M

[x]
/G/m/m+r

Out

Load Balancing Server

client

client

client

`

client

...

PM #2

Hardware

VM

1
VM

2

VM

3

VM

m-1

VM

m
Out

...

PM #M

Hardware

VM

1

VM

2

VM

3

VM

m-1

VM

m
Out

...

...

Hypervisor layer

Hypervisor layer

PMs

Cloud Center

in

M
[x]

/G/m/m+r

in

M
[x]

/G/m/m+r

Figure 4.1: The architecture of the cloud center.

through a load balancing server to one of the PMs. Users can request one or more VMs

at a time, i.e., we allow batch (or super-) task arrivals, which is consistent with the so-

called On-Demand services in the Amazon Elastic Compute Cloud (EC2) [2]; as these

services provide no advance reservation and no long-term commitment, clients may expe-

rience delays in fulfillment of requests. While the number of potential users is high, each

user typically submits single batch request at a time with low probability. Therefore, the

super-task arrival can be adequately modeled as a Poisson process [30].

When a super-task arrives, the load balancing server attempts to provision it – i.e.,

allocate it to a single PM with the necessary capacity. As each PM has a finite input queue

for individual tasks, this means that the incoming super-tasks are processed as follows:

• If a PM with sufficient spare capacity is found, the super-task is provisioned imme-

Chapter 4: Performance Modeling: Virtualized Environment 97

diately.

• Else, if a PM with sufficient space in the input queue can be found, the tasks within

the super-task are queued for execution.

• Otherwise, the super-task is rejected.

In this manner, all tasks within a super-task are processed together, whether they are ac-

cepted or rejected. This policy, known as total acceptance/rejection, benefits the users that

typically would not accept partial fulfillment of their service requests. It also benefits the

cloud providers since provisioning of all tasks within a super-task on a single PM reduces

inter-task communication and, thus, improves performance.

As statistical properties of task service times are not well known and cloud providers

don’t publish relevant data, it is safe to assume a general distribution for task service times,

preferably one that allows the coefficient of variation (CoV) to be adjusted independently

of the mean value [13]. However, those service times apply to a VM running on a non-

loaded PM. When the total workload of a PM increases, so does the overhead required to

run several VMs simultaneously, and the actual service times will increase. Our model

incorporates this adjustment as well, as will be seen below.

In summary, our work advances the performance analysis of cloud computing centers

by incorporating a high degree of virtualization, batch arrival of tasks and generally dis-

tributed service time. These key aspects of cloud centers have not been addressed in a

single performance model previously.

98 Chapter 4: Performance Modeling: Virtualized Environment

4.2 Analytical Model

We assume that the cloud center consists ofM identical PMs with up tomVMs each, as

shown in Fig. 4.1. Super-task arrivals follow a Poisson process, as explained above, and the

inter-arrival time A is exponentially distributed with a rate of 1
λi

. We denote its cumulative

distribution function (CDF) with A(x) = Prob[A < x] and its probability density function

(pdf) with a(x) = λie
−λx; the LST of this pdf is

A∗(s) =

∫ ∞
0

e−sxa(x)dx =
λi

λi + s
.

Note that the total arrival rate to the cloud center is λ so that

λ =
M∑
i=1

λi.

Let gk be the probability that the super-task size is k = 1, 2, . . .MBS, in which MBS

is the maximum batch size which, for obvious reasons, must be finite; both gk and MBS

depend on user application. Let g and Πg(z) be the mean value and probability generating

function (PGF) of the task burst size, respectively:

Πg(z) =
MBS∑
k=1

gkz
k

g = Π(1)
g (1)

(4.1)

Therefore, we model each PM in the cloud center as an M [x]/G/m/m+ r queuing system.

Each PM may run up to m VMs and has a queue size of r tasks.

Service times of tasks within a super-task are identically and independently distributed

according to a general distribution. However, the parameters of the general distribution

(e.g., mean value, variance and etc.) are dependent on the virtualization degree of PMs.

The degradation of mean service time due to workload can be approximated using data

Chapter 4: Performance Modeling: Virtualized Environment 99

from recent cloud benchmarks [6]; unfortunately, nothing can be inferred about the behav-

ior of higher moments of the service time [12]. For example, Fig. 4.2 depicts the VMmark

performance results for a family of same-generation PMs under different number of de-

ployed tiles [97]. The VMmark score is an overall performance of a server under virtual-

ized environment; a detailed description of VMmark score can be found in [96]. From date

in Fig. 4.2, we can extract the dependency of mean service time on the number of deployed

VMs, normalized to the service time obtained when the PM runs a single tile, as shown

in Fig. 4.3. Note that mean service time represents both computation and communication

time for a task within super-tasks.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
No. of Tiles

0

2

4

6

8

10

12

V
M

m
a
rk

 S
co

re

VMmark Results of Servers.

Figure 4.2: Performance vs. no. of tiles.

The dependency shown in Fig. 4.3 may be approximated to give the normalized mean

service time, bn(y), per tile as a function of virtualization degree:

bn(y) =
b(y)

b(1)
= 1/(0.996− (8.159 ∗ 10−6) ∗ y4.143) (4.2)

where y denotes the number of tiles deployed on a single PM. Therefore, the CDF of the

service time will be By(x) = Prob [By < x] and its pdf is by(x), while the corresponding

100 Chapter 4: Performance Modeling: Virtualized Environment

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
No. of Tiles

0.6

0.8

1

1.2

1.4

1.6

N
o
rm

a
liz

e
d
 S

e
rv

ic
e
 T

im
e

Normalized Mean Service Time per Tile.

Figure 4.3: Normalized mean service time vs. no. of tiles.

LST is

B∗y(s) =

∫ ∞
0

e−sxby(x)dx.

The mean service time is then:

b(y) = −B′∗y (0).

If the maximum number of allowed tiles on each PM is Ω, then the aggregate LST will be

B∗(s) =
Ω∑
y=1

pyB
∗
y(s).

where py is the probability of having y tiles on a single PM. Then the aggregate mean

service time is

b = −B′∗(0) =
Ω∑
y=1

pyb(y).

The mass probabilities {py, y = 1 . . Ω} are dependent on the traffic intensity and obliga-

tions stemming from service level agreement between the provider and the user. A cloud

provider may decide to deploy more tiles on PMs to reduce the waiting time – which, ac-

cording to (4.2), will lead to deterioration of service time. We will examine the dependency

between y and the traffic intensity in our numerical validation.

Chapter 4: Performance Modeling: Virtualized Environment 101

As service times are not exponentially distributed, the corresponding process for the

PM performance model is not Markovian and direct analysis of this system is not possi-

ble. To arrive at a tractable solution, we use a staged approximation-based procedure, as

follows. First, we define an embedded semi-Markov process that coincides with the orig-

inal process at the moments of super-task arrivals and task departures. Second, we define

an embedded Markov process that approximates the semi-Markov process at the time of

super-task arrivals. In this process, task departures between two successive super-task ar-

rivals are counted, but they are assumed to occur at the time of next super-task arrival. The

approximate embedded Markov chain corresponding to the embedded Markov process is

then solved to obtain the relevant performance indicators.

Hereafter, the analytical model steps are the same as the analytical model in chapter

3. Note that in this chapter we model each PM as a M [x]/G/m/m + r queuing system as

opposed to the whole cloud center. Due to different parameter setting and configuration,

the number of idle PMs (i.e., Fig. 4.4 and Table 4.2) is calculated in a different manner.

Table 4.2: Parameters for optimum exponential curves abx.

mean super-task size

parameter 5 10 15 20 25

a 1.99E-01 1.00E-01 6.87E-02 5.40E-02 4.59E-02

b 8.00E-01 9.00E-01 9.33E-01 9.50E-01 9.60E-01

102 Chapter 4: Performance Modeling: Virtualized Environment

Figure 4.4: Probability of having n idle PMs (Pi(n))s for different mean batch sizes.

4.3 Numerical Validation

We have configured a cloud center with M = 1000 PMs under two degrees of virtu-

alization: 100 and 200 VMs per PM. We refer them as moderate and heavy configuration

respectively. Latest VMmark results [97], show that only a few types of current state-of-

the-art PMs can run up to 200 VMs with an acceptable performance while most of them

are optimized to run up to 100 VMs.

The input queue size is set to r = 300 tasks. Traffic intensity is set to ρ = 0.85, which

may seem too high but could easily be reached in private cloud centers or public centers

of small/medium size providers. The distribution of batch size is assumed to be truncated

Geometric, with maximum batch size set to MBS = 3
g

+ 1 in which g is the probability of

success in the Geometric distribution. Note that real cloud centers may impose an upper

Chapter 4: Performance Modeling: Virtualized Environment 103

limit for the number of servers requested by a customer. Task service time is assumed to

have Gamma distribution, which is chosen because it allows the coefficient of variation

to be set independently of the mean value. The mean value depends on the degree of

virtualization: on account of (4.2), we set the task service time as 120 and 150 minute for

moderate and heavy virtualization, respectively. Two values are used for the coefficient of

variation: CoV = 0.5 and 1.4, which give rise to hypo- and hyper-exponentially distributed

service times, respectively.

4.3.1 Analytical Model Results

Diagrams in Fig. 4.5 show the analytical results for various performance indicators vs.

super-task size. As can be seen, the queue size increases with mean batch size whereas the

mean number of tasks in the system decreases with it. The moderate configuration always

outperforms the heavy configuration for single request arrivals (i.e., super-tasks with size

one), as opposed to bigger super-tasks. This may be attributed to the total rejection policy,

which lets some PMs to remain idle even though there exist some super-tasks (potentially

big super-tasks) in the queue. As might be expected, the blocking probability increases as

the size of batches increases, while the probability of immediate service (which might be

termed availability) decreases almost linearly. Nevertheless, the probability of immediate

service is above 0.5 in the observed range of mean batch sizes, which means that more

than 50% of user requests will be serviced immediately upon arrival, even though the total

traffic is ρ = 0.85, which is rather high.

We have also computed the system response time and queue waiting time for super-

tasks. Note that, because of the total rejection policy explained above, the response and

104 Chapter 4: Performance Modeling: Virtualized Environment

(a) Mean number of tasks in the system. (b) Mean queue length.

(c) Blocking probability. (d) Probability of getting immediate service.

(e) Response time. (f) Waiting time in the queue.

Figure 4.5: Performance measures as function of mean batch size of super-tasks.

Chapter 4: Performance Modeling: Virtualized Environment 105

waiting times for super-tasks are identical for all individual tasks within the super-task. As

depicted in Fig. 4.5(e), response time—which is the sum of waiting time and service time—

and waiting time, Fig. 4.5(f), slowly increase with an increase in mean batch size. This

may be attributed to the fact that larger mean batch size leads to larger super-tasks, which

are more likely to remain longer in the queue before the number of idle PMs becomes

sufficiently high to accommodate all of its individual tasks. Also, heavy configuration

imposes shorter waiting time in queue on super-tasks. In other words, waiting time in queue

is heavily influenced by admission policy rather than overhead of virtualization. However,

response time is more sensitive to the degree of virtualization. It can also be seen that CoV

of service time plays an important role on total response time for large super-tasks (i.e.,

size 25). In all of the experiments described above, the agreement between analytical and

simulation results is very good, which confirms the validity of the proposed approximation

procedure using eSMP and aEMP/aEMC.

4.3.2 Simulation Results

Using the object-oriented Petri net-based simulation engine Artifex by RSoftDesign

Inc. [79], we developed an independent simulation model. Fig. 4.6 presents corresponding

simulation results, with 95% confidence interval, for Fig. 4.5 in subsection 4.3.1. As can

be seen, simulation results are in a good match with results from analytical model.

106 Chapter 4: Performance Modeling: Virtualized Environment

(a) Mean number of tasks in the system. (b) Mean queue length.

(c) Blocking probability. (d) Probability of getting immediate service.

(e) Response time. (f) Waiting time in the queue.

Figure 4.6: Performance measures as function of mean batch size of super-tasks (Simula-
tion Model).

Chapter 4: Performance Modeling: Virtualized Environment 107

4.4 The impact of homogenization

The results presented above indicate that the response time is very sensitive to the coef-

ficient of variation of task service times and the number of tasks in a super-task. Therefore,

some way to keep these values within certain bounds may help improve performance of

the cloud center. Since users cannot be forced to submit requests with prescribed charac-

teristics, the cloud provider may try to do so internally. One way of ‘taming’ the requests

is to separate the input super-task stream into two or more sub-streams that are better be-

haved, and then feed those sub-streams into separate sub-clouds. In this manner, a single

‘homogeneous’ cloud center is to be partitioned into two or more sub-clouds which deal

with more ‘homogeneous’ request streams. Partitioning should be made on the basis of

the coefficient of variation of task service times and/or on the basis of the size of (i.e., the

number of tasks within) the super-task.

To validate this approach, we carried out two experiments with a cloud center consisting

of M = 1000 PMs, each of which runs up to 100 VMs and has an input buffer of capacity

r = 250 slots. In both cases, the incoming super-tasks have mean number of tasks of 2 and

Gamma-distributed task service times.

First, super-tasks are partitioned according to the CoV of their task service times. We

assume two types of super-tasks arriving at the cloud center: super-tasks in which task

service times are hypo-exponentially distributed with CoV = 0.5 and super-tasks having

tasks with hyper-exponentially distributed service time with CoV = 2. The primary con-

figuration kept both incoming super-task streams in the same pool of PMs in the original

cloud center. Then, the incoming streams were split, and the resulting sub-streams were fed

to sub-clouds with M ′ = 500 PMs and an input buffer with r′ = 250 task slots. However,

108 Chapter 4: Performance Modeling: Virtualized Environment

(a) Waiting time. (b) Probability of immediate service.

Figure 4.7: One heterogeneous center versus two homogeneous sub-clouds; homogeniza-
tion is based on CoV of tasks’ service time.

the separation was not complete, and partial server sharing was implemented: namely, if

one of the sub-clouds could not accommodate the super-task at the head of the queue but

the other sub-cloud could, the super-task was routed to the other sub-cloud. The results,

shown in Fig. 4.7(a), confirm that the aggregate waiting time is indeed lower in the case of

homogeneous sub-centers than in the case of one heterogeneous center, despite its larger

capacity. This is further confirmed by the diagrams in Fig. 4.7(b) that show the probability

of immediate service; again, homogeneous sub-clouds provide better performance than a

single but heterogeneous cloud. Similar results, albeit in a different setting, were reported

in [9, 82].

In our second experiment, incoming super-tasks were partitioned according to their

size, as follows. Super-tasks with size up to g (where g denotes mean super-task size) were

sent to one of the sub-clouds, while those with larger size were sent to another. As above,

partial sharing of sub-clouds was allowed. As can be seen from the diagrams Fig. 4.8,

Chapter 4: Performance Modeling: Virtualized Environment 109

homogenization of this type also leads to better performance in terms of both mean waiting

time and probability of immediate service.

(a) Waiting time. (b) Probability of immediate service.

Figure 4.8: One heterogeneous center versus two homogeneous sub-clouds; homogeniza-
tion is based on super-tasks’ size.

From the results of these experiments, we may conclude that a simple partitioning of

input requests may help cloud providers improve customer-perceived performance. Re-

duced waiting times also indicate that the utilization of cloud servers is better, which is

advantageous for the cloud provider. Moreover, economic incentives (such as appropriate

pricing policies) should be considered to encourage customers to break down super-tasks

(batches) into the smallest possible size; these issues will be the topic of our future work.

4.5 Summary of the Chapter

In this chapter, we have described an analytical model for performance evaluation of

a highly virtualized cloud computing center with additional correction for performance

110 Chapter 4: Performance Modeling: Virtualized Environment

deterioration under heavy workload. More specifically, we permitted each PM to run up

to 200 VMs, just like state-of-the-art PMs, and considered the effects of virtualization on

PMs performance based on the real data.

Our findings show that in virtualized cloud centers which allow requests with widely

varying service times may experience longer waiting time and lower probability of getting

immediate service for its clients. Through a simple partitioning-based homogenization

in which super-tasks with similar characteristics are grouped into separate streams and

serviced by separate sub-clouds, is shown to provide superior performance with respect to

the case where all requests are serviced by a single cloud center. Partitioning may be done

on the basis of super-task size and/or coefficient of variation of task service times. In this

manner, cloud customers may obtain better service from cloud centers specifically geared

to handling their type of services, and they may expect generally better performance if their

request are submitted in super-tasks with the minimum possible number of required PMs.

Chapter 5

Interacting Fine-Grained Performance

Model

In Chapter 1, we stated the reasons for assuming general distribution for task service

time. We have developed the monolithic abstract model (chapters 2, 3 and 4) in which gen-

erally distributed service time of tasks was assumed and desired performance indicators

have been obtained. Although service time and waiting time in queue are the dominant

components of response time, other delays attributed to provisioning and servicing steps

may not be negligible. Therefore, we are going to take into account other types of delays

imposed on user’s tasks by cloud centers. In other words, we are going to break down a fa-

cility node (described in Chapter 1) in order to increase the scope of our analytical model.

By exploring the facility nodes (i.e., breaking down the response time) one monolithic

model may not capture the whole cloud behavior due to large scale and high complexity

associated with the cloud computing architecture. Therefore we construct a fine-grained

performance model that includes distinct sub-models. Each sub-model is designed for dif-

111

112 Chapter 5: Interacting Fine-Grained Performance Model

ferent provisioning and servicing steps of a complex cloud service; the overall solution

is obtained by integrating individual sub-model solutions [44]. Later on we establish an

availability model on top of the fine-grained performance model to calculate effective per-

formance metrics [48].

This Chapter is organized as follows: in Section 5.1, an introduction to the virtualized

cloud center is presented. Section 5.2 highlights the related works in which an analytical

model has been proposed for virtualized cloud center. The integrated pure performance

model has been elaborated in Section 5.4. In Section 5.5, we present the numerical valida-

tion results of performance model. The availability model and analytical results of end-to-

end performance model have been presented in sections 5.7 and 5.8 respectively. Section

5.9 summarizes the Chapter.

5.1 Introduction

IaaS cloud providers, such as Amazon EC2 [3], IBM Cloud [36], GoGrid [29], NephoScale

[70], Rackspace [75] and others, deliver, on-demand, operating system (OS) instances pro-

visioning computational resources in the form of virtual machines deployed in the cloud

provider data center.

Quantifying and characterizing performance measures in a virtualized environment re-

quires appropriate modeling; the model ought to cover vast parameter space while it is still

tractable. A monolithic model may suffer from intractability and poor scalability due to

large number of parameters [63].

Instead, in this Chapter we develop and evaluate tractable functional sub-models and

their interaction model while iteratively solve them. We construct separate sub-models for

Chapter 5: Interacting Fine-Grained Performance Model 113

different servicing steps in a complex cloud center and the overall solution obtain by itera-

tion over individual sub-model solutions [28]. We assume that the cloud center consists of

a number of Physical Machines (PM) that are allocated to users in the order of task arrivals.

More specifically, user requests may share a PM using virtualization technique. Since many

of the large cloud centers employ virtualization to provide the required resources such as

PMs [22], we consider PMs with a high degree of virtualization. Real cloud providers of-

fer complex requests for their users. For instance, in Amazon EC2, the user is allowed to

run up to 20 On-Demand or Reserved Instances, and up to 100 Spot Instances per region

[3]. Such complex requests are equal to super-tasks in our context. Our proposed model

embraces realistic aspects and provides deep insight into performance analysis of today’s

cloud centers. The main features of our analytical model can be listed as follows:

• Assumes Poisson arrival of user requests;

• Incorporates complex user requests by introducing super-tasks;

• Supports high degree of virtualization;

• Captures different delays imposed by cloud centers on user requests;

• Characterizes the service availability at cloud center;

• Provides information for capacity planning;

• Offers tractability and scalability;

In the following sections, we survey existing literature in above mentioned areas and

elaborate our future work that we are envisioning at this point of time.

114 Chapter 5: Interacting Fine-Grained Performance Model

5.2 Related Work

Virtualization technology has been adopted to cope with several problems in current

cloud centers such a hardware under-utilization, data center space shortage, and high sys-

tem administration costs. However, such virtualization techniques complicated the perfor-

mance evaluation of cloud centers. Recently a few performance models have been devel-

oped and they differ in:

(a) which aspects of a real system are or are not captured in the model (e.g. distribution of

delays (e.g. service time, inter-arrival time, installation, start up and etc.), communica-

tion, failure and etc).

(b) how these aspects are modeled.

In the following text we describe the existing models:

Many research works carried out a measurement-based performance evaluation of the

Amazon EC2 [3], IBM Blue Cloud [36] or other cloud providers in the context of scientific

computing [37, 109, 15, 73, 99, 101, 80, 1]. Here we survey those that proposed a general

analytical model for performance evaluation of virtualized cloud centers.

The performance of cloud computing services for scientific computing workloads was

examined in [37]. The authors quantified the presence of Many-Task Computing (MTC)

users in real scientific computing workloads. Then, they performed an empirical evalua-

tion of the performance of four commercial virtualized cloud computing services including

Amazon EC2. Also, the authors compared the performance characteristics and cost models

of clouds and other scientific computing platforms, for general and MTC-based scientific

computing workloads.

Chapter 5: Interacting Fine-Grained Performance Model 115

The authors in [52] present an analytic approach for availability model for virtualized

and non-virtualized systems using a hierarchical analytic model in which a fault tree is

used in the upper level and CTMC are used in the lower level. They incorporate hardware

failures, virtual machine monitor (VMM) failures, VM failures, and application failures.

Authors evaluate system availability, downtime in minutes per year, and capacity oriented

availability using some experimental data and guesstimates.

A technique that can increase availability of application servers through the use of virtu-

alization and clustering is proposed in [91]. Using analytical modeling via CTMCs authors

analyze multiple design choices when a single physical server and dual physical servers are

used to host multiple virtual machines.

Authors et al. [28] proposed a general analytic model based approach for an end-to-end

performance analysis of a cloud service. They illustrated their approach using IaaS cloud,

where service availability and provisioning response delays are two key QoS metrics. The

proposed approach reduces the complexity of performance analysis of cloud centers by

dividing the overall model into sub-models and then obtaining the overall solution by iter-

ation over individual sub-model solutions. The model is limited to single request arrivals,

which is not quite realistic; cloud users may ask for multiple PMs or VMs by submitting in

a single request. In addition, the effect of virtualization has not been reflected explicitly in

their results.

Authors et al. [26] quantified the resiliency of IaaS cloud with respect to changes in

demand and available capacity. Using a stochastic reward net based model for provisioning

and servicing requests in a IaaS cloud, they quantified the resiliency of IaaS cloud with

respect to two key performance measures, namely, task rejection rate and total response

116 Chapter 5: Interacting Fine-Grained Performance Model

delay. In this work, only, the effect of abrupt changes in arrival process and system capacity

(i.e., physical machines) have been studied on mentioned performance metrics.

An analytical model for availability analysis of large scale IaaS cloud is proposed in

[63]. To reduce the complexity of analysis, the authors employ the same decomposition

technique as [28] using stochastic reward net (SRN), a high level Petri net, in order to facil-

itate construction and simulation-based solution of Markov chains. Dependencies among

the sub-models are resolved using fixed-point iteration technique. The authors also de-

velop a monolithic model and show that the error introduced by interactive sub-models is

negligible.

5.3 Analytical Model

In IaaS cloud, when a request is processed, a pre-built or customized disk image is used

to create one or more VM instances [26]. In this work we assume that pre-built images

fulfill all user requests. We assume that Physical Machines (PMs) are categorized into three

server pools: hot (i.e., with running VMs), warm (i.e., turned on but without running VM)

and cold (i.e., turned off) [28]. Such categorization reduces operational costs and offers

the capability for disaster recovery [3, 51]. Each PM has up to two instantiation units that

configure and deploy VMs on a PM. Instantiation of a VM from an image and provisioning

it on hot PMs has the minimum delay compared to warm and cold PMs. Warm PMs require

more time to be ready for provisioning and cold PMs require additional time to be started

up before a VM instantiation. In this work we allow users to request more than one VM

by submitting a super-task [43]. So, a super-task may contain more than one task, each of

which requires one VM. The size of super-task is assumed to be geometrically distributed.

Chapter 5: Interacting Fine-Grained Performance Model 117

However, for practical reason we set a maximum size of super-tasks (MSS) to conduct

the numerical analysis (i.e., truncated geometric distribution). Therefore the probability of

having a super-task with size i is

pi =


(1− p)i−1p, if i < MSS

(1− p)MSS−1, if i = MSS

(5.1)

in which p is the probability of success in geometric distribution.

Due to high interaction among tasks within a super-task, each super-task will be pro-

visioned on the same PM. However, the number of tasks (VMs) requested by a single

super-task cannot exceed the maximum number of VMs that can run on a single PM. In

this manner the inter-tasks communication overhead among tasks within a given super-task

will be decreased significantly. In this work, we assume that all PMs and VMs are ho-

mogeneous and adopt total acceptance policy [87]. Under this policy the system tries to

service all tasks within a super-task at the same time; provided that partial admission of

a super-task is not considered. User requests (super-tasks) are submitted to a global finite

queue and then processed on the first-in, first-out basis (FIFO).

Resource Assigning Module (RAM) processes the super-task at the head of global

queue as follows: first, it tries to provision the super-task on a PM machine in the hot

pool. If the process is not successful then RAM tries the warm pool and finally the cold

pool. Ultimately, RAM either assigns a PM in one of the pools to a super-task or the super-

task gets rejected. As a result, user requests (super-tasks) may get rejected either due to

lack of space in global input queue or insufficient resource at the cloud center. When a

running task finishes, the capacity used by that VM is released and becomes available for

118 Chapter 5: Interacting Fine-Grained Performance Model

servicing the next task.

Table 5.1 describes the symbols and acronyms that we use in next sections.

Table 5.1: Symbols and corresponding descriptions

Symbol Description

RAM Resource Assigning Module

VMPM Virtual Machine Provisioning Module

RASM Resource Allocation Sub-Model

VMPSM Virtual Machine Provisioning Sub-Model

MSS Maximum Super-task Size

pi Probability of having a super-task with size i

λst Mean arrival rate of super-tasks

Lq Size of global queue

Ph, Pw, Pc Prob. of success in hot, warm and cold pool

Nh, Nw, Nc Number of PMs in hot, warm and cold pool

φh, φw, φc Instantiation rate of VMs in hot, warm or cold pool

λh, λw, λc Arrival rate to a PM in hot, warm and cold pool

αh, αw, αc Look up rate in hot, warm and cold pool

BPq Prob. of blocking due to lack of room in global queue

BPr Prob. of blocking due to lack of capacity

Preject Total probability of blocking (BPq +BPr)

wt Mean waiting time in global queue

lut Mean look-up delay among pools

wtPM Mean waiting time in a PM queue

pt Mean VM provisioning time

td Mean total delay for a task before getting into service

Chapter 5: Interacting Fine-Grained Performance Model 119

Resource Assigning Module
G

lo
b

a
l

Q
u

e
u

e

VM Provisioning Module

Instance

Creation

VM Start up

P
M

Q
u

e
u

e VM

run-time
out

Time
Super-task

Arrival
Global Queuing

PM Provisioning & Pool

Management

Queuing at

each PM
VM Provisioning Actual Service

Time

Super-task blocking due

to insufficient capacity

Super-task blocking due

to lack of room in queue

in
w c

h

FIFO FIFO

Figure 5.1: The steps of servicing and corresponding delays.

We identify four main delays imposed on user requests (Fig. 5.1): queuing delay in the

global queue; look-up time at the RAM; queuing delay at the chosen PM; and VM provi-

sioning delay. The response time is the sum of the sum of these delays and the actual ser-

vice time. In order to model each module precisely, we design two stochastic sub-models,

captures the details of the RAM and VMPM modules. We then connect these sub-models

into an overall model to compute the cloud performance metrics: task rejection probability

and mean response delay. Finally, we solve these sub-models and show how performance

metrics are affected by variations in workload (super-task arrival rate, super-task size, task

mean service time, number of VMs per PM) and system capacity (i.e., number of PMs in

each pool). We describe our analysis in the following sections.

120 Chapter 5: Interacting Fine-Grained Performance Model

5.4 Integrated Stochastic Models

As mentioned in Section 5.2, due to high complexity of cloud centers, the monolithic

models were hard to analyze and extend. By introducing interacting analytical sub models,

the complexity of system is divided into sub-models so that they can be analyzed accurately

in order of processing of task components. Moreover, the sub-models are scalable enough

to capture the flexibility (on-demand services) of the cloud computing paradigm. In this

Chapter, we implement the sub-models using interactive Continuous Time Markov Chain

(CTMC). The sub-models are interactive such that the output of one sub-model is input to

the other ones and vice versa.

5.4.1 Resource Allocation Sub-Model

The resource allocation process is described in the resource allocation sub-model (RASM)

shown in Fig. 5.2. RASM is a two dimensional CTMC in which we take care of number of

super-task in the queue as well as the current pool on which provisioning is taking place.

Since the number of potential users is high, but each user submits super-tasks one at a time

with low probability, the super-task arrival can be modeled as a Poisson process [30] with

rate λst. Super-tasks are lined up in the global finite queue to be processed in a first-in,

first-out (FIFO) basis. Each state of Markov chain is labeled as (i, j), where i indicates

the number of super-tasks in queue and j denotes the pool on which the leading super-task

is under provisioning. State (0, 0) indicates that system is empty which means there is no

request under provisioning or in the queue. Index j can be h, w or c that indicate current

super-task is undergoing provisioning on hot, warm or cold pool respectively. The global

queue size is Lq and one more super-task can be at the deployment unit for provisioning so

Chapter 5: Interacting Fine-Grained Performance Model 121

the total system capacity is Lq + 1.

Let Ph, Pw and Pc be the success probabilities of finding a PM that can accept the

current super-task in hot, warm and cold pool respectively. We assume that 1/αh, 1/αw

and 1/αc are the mean look-up delays for finding an appropriate PM in hot, warm and cold

pool respectively. Upon arrival of first super-task, system moves to state (0, h) which means

the super-task will be provisioned immediately in the hot pool. Afterwards, depending on

the upcoming event, three possible transitions can occur:

(a) Another super-task has arrived and system transits to state (1, h) with rate λst.

(b) A PM in hot pool accepts the super-task so that system moves back to state (0, 0) with

rate Phαh.

(c) None of PMs in hot pool has enough capacity to accept the super-task, so the system

will examine the warm pool (i.e., transit to state (0, w)) with rate (1− Ph)αh.

On state (0, w), RASM tries to provision the super-task on warm pool; if one of the PMs in

warm pool can accommodate the super-task, the system will get back to (0, 0), otherwise,

RASM examines the cold pool (i.e., transition from state (0, w) to (0, c)). If none of the

PMs in cold pool can provision the super-task as well, the system moves back from (0, c)

to (0, 0) with rate (1 − Pc)αc which means the user request (super-task) will get rejected

due to insufficient resources in the cloud center. During the provisioning in cold pool,

another super-task may arrive and takes the system to state (1, c) which means there is one

super-task in deployment unit and one awaiting in global queue. Finally, the super-task

under provisioning decision leaves the deployment unit, once it receives a decision from

RASM and the next super-task at the head of global queue will go under provisioning. In

122 Chapter 5: Interacting Fine-Grained Performance Model

this sub-model, arrival rate of super-task (λst) and look-up delays (1/αh, 1/αw and 1/αc)

are exogenous parameters and success probabilities (Ph, Pw and Pc) are calculated from

the VM provisioning sub-model. The VM provisioning sub-model will be discussed in the

next Section.

0,0

λst

Lq,h1,h0,h

Lq,c1,c0,c

Lq,w1,w0,w

λst λst

αh(1-Ph)Pwαw

αw(1-Pw)αw(1-Pw)αw(1-Pw)

αh(1-Ph)αh(1-Ph)

λst

Phαh

λst

...

...

...

Phαh

Pwαw

Pwαw

λst

λst

λst

Phαh Phαh

λst

λst

αc(1-Pc)

Pcαc

αc(1-Pc) Pcαc

Pcαc

αc(1-Pc)

Hot Pool

Warm Pool

Cold Pool

Figure 5.2: Resource allocation sub-model.

Using steady-state probabilities π(i,j), some performance metrics such as blocking prob-

ability and probability of immediate service can be calculated. Two types of blocking may

happen to a given super-task:

(a) Blocking due to a full global queue occurs with the probability of

BPq = π(Lq ,h) + π(Lq ,w) + π(Lq ,c) (5.2)

Chapter 5: Interacting Fine-Grained Performance Model 123

(b) Blocking due to insufficient resources (PMs) at pools [34], with the probability of

BPr =

Lq∑
i=0

αc(1− Pc)
αc + λst

π(i,c) (5.3)

The probability of reject (Preject) is, then, Preject = BPq+BPr. In order to calculate the

mean waiting time in queue, we first establish the probability generating function (PGF)

for the number of super-tasks in the queue [86],

Q(z) = π(0,0) +

Lq∑
i=0

(π(i,h) + π(i,w) + π(i,c))z
i (5.4)

The mean number of super-tasks in queue (q) is the first derivative of Q(z) at z = 1 [87],

q = Q′(1) (5.5)

Applying Little’s law [57], the mean waiting time in queue (wt) is given by:

wt =
q

λst(1− Preject)
(5.6)

Look-up time among pools can be considered as a Coxian distribution with 3 steps (Fig.

5.3). So it can be calculated as [57, 94],

lut =
1/αh + (1− Ph)((1/αw) + (1− Pw)(1/αc))

1−BPq
(5.7)

h cw

Ph

1-Ph

Pw

1-Pw

1

in

out

Figure 5.3: Three steps of look-up delays among pools.

124 Chapter 5: Interacting Fine-Grained Performance Model

5.4.2 VM Provisioning Sub-Model

Virtual Machine Provisioning Sub-Model (VMPSM) captures the instantiation, deploy-

ment and provisioning of VMs on a PM. VMPSM also incorporate the actual servicing of

each task (VM) on a PM. Note that each task within super-task is provisioned with an indi-

vidual VM. However RASM makes sure that all tasks within a super-task get provisioned

at the same PM. In this model, we assume homogeneous PMs, VMs and tasks. As can

be seen from Fig. 5.3, the look-up time for finding a proper PM among pools has Coxian

distribution and the look-up time is a weighted sum of an exponentially distributed ran-

dom variable with the probability of Ph, a 2-stage Erlang distributed random variable with

the probability of (1 − Ph)Pw, and a 3-stage Erlang distributed random variable with the

probability of (1− Ph)(1− Pw)Pc. Hence, the LST of look-up time can be calculated as:

B∗(s) = Ph(
αh

s+ αh
) + Pw(1− Ph)(

αh
s+ αh

)(
αw

s+ αw
)

+ (1− Ph)(1− Pw)(
αh

s+ αh
)(

αw
s+ αw

)(
αc

s+ αc
)

(5.8)

which allows us to calculate the mean, standard deviation and coefficient of variation (CoV)

of the look-up time at the PM pools. As RASM is not an M/M/1 queuing system, the

output process (which is also the arrival process to the PMs) is not Poisson [19] so, strictly

speaking, the VMPSM cannot be modeled with a CTMC [57]. However, if the CoV of

the arrival process to the PMs is not significantly lower than 1, we can approximate it with

a Poisson process. This assumption, which will be justified in Section 5.5, allows us to

model the process with sufficient accuracy. Using Eq. (5.8), we are able to calculate the

mean, standard deviation and coefficient of variation (CoV) of the look-up time at pools.

Such measures help us to verify the accuracy of the approximation. We will present and

Chapter 5: Interacting Fine-Grained Performance Model 125

discuss this issue with further details in the numerical validation Section.

Fig. 5.4 shows the VMPSM (an approximated CTMC) for a PM in hot pool. A PM in

warm or cold pool can be modeled with the same VMPSM, though, with different arrival

and instantiation rate. Consequently, each pool (hot, warm and cold) can be modeled as a

set of VMPSM with the same arrival and instantiation rate. Each state in Fig. 5.4 is labeled

by (i, j, k) in which i indicates the number of tasks in PM’s queue, j denotes the number

of task that is under provisioning and k is the number of VM that are already deployed

on the PM. Note that we set the queue size at each PM equal to the maximum number of

VMs that can be deployed on a PM. Let φh be the rate at which a VM can be deployed on

a PM at hot pool and µ be the service rate of each VM. So, the total service rate for each

PM is the product of number of running VMs by µ. State (0, 0, 0) indicates that the PM

is empty and there is no task either in the queue or in the instantiation unit. Depending on

the size of arriving super-task, model transits to one of the states in {(0, 1, 0), (1, 1, 0), · · ·

,(MSS − 1, 1, 0)}, in which MSS is the maximum possible size of super-tasks. Since all

tasks within a super-task are to be provisioned at the same PM, the maximum number of

VMs on a PM must be at least equal to MSS. The arrival rate to each PM in the hot pool is

given by:

λh =
λst(1−BPq)

Nh

(5.9)

in which Nh is the number of PMs in the hot pool. Note that BPq, used in (5.2), is obtained

from RASM. In Fig. 5.4, {λi, i = 1..MSS} is given by λi = λhpi; here pi is the probability

of having a super-task of size i. In this work, the size of super-task can be generally

distributed, but we use truncated geometric distribution for numerical experiment. The

state transition in VMPSM can occur due to super-task arrival, task instantiation or service

126 Chapter 5: Interacting Fine-Grained Performance Model

0,0,0

MSS-3,2,10,1,10,0,1

LQ,2,0MSS-2,2,00,2,00,1,0

λ1 λ2 λMSS

...λ1 ...

φh 2φh 2φh

μ

...

μ

λ1 LQ-1,2,1 LQ,2,1...

LQ,0,m

LQ,1,m-1

φh

LQ-1,1,m-1
λ1

λ1

mμ

(m-1)μ

LQ-1,0,m

mμ
φh

...0,0,m

φh

0,0,m-1
λ1

mμ

(m-1)μ φh

...

λ1

(m-1)μ

λ1

λ1
0,1,m-1

λ1

φh

...

...

μ μ

μ

λ1

2φh

2φh 2φh 2φh

λMSS

...

λ2

λ1

λMSS

...

λ1

λMSS

...

λ1

λMSS

...

λ2

λMSS

... λ2

λMSS

...
λ2

λMSS

... λ2

...

...

2φh

2φh

2φh

(m-1)μ

λ1

λMSS

...

λ2

λMSS

...

λ2

Figure 5.4: Virtual machine provisioning sub-model for a PM in the hot pool.

completion. From state (0, 0, 0), system can move to state (1, 1, 0) with rate λ2 (i.e., super-

task with size 2). From (1, 1, 0), system can transit to (0, 1, 1) with rate φh (i.e., instantiation

rate) or upon arriving a super-task with size k, moves to state (k + 1, 1, 0). From (0, 1, 1),

system can move to (0, 0, 2) with rate φh, transits to (0, 1, 0) with rate µ (i.e., service

completion rate), or again upon arriving a super-task with size k, system can move to

state (k, 1, 1) with rate λk. A PM can not accept a super-task, if there is no enough room to

accommodate all tasks within super-task. Suppose that πh(i,j,k) is the steady-state probability

for the hot PM model (Fig. 5.4) to be in the state (i, j, k). Using steady-state probabilities,

we can obtain the probability that at least one PM in hot pool can accept the super-task

for provisioning. First we need to compute the probability that a hot PM cannot admit a

Chapter 5: Interacting Fine-Grained Performance Model 127

super-task for provisioning (P h
na). Let m be the maximum possible number of VMs in a

PM and Fh be the free capacity at each state:

Fh(i, j, k) = m− (i+ j + k)

P h
na is then given by:

P h
na =

∑
x∈ξ

MSS∑
t=Fh+1

πhxpt (5.10)

where pt is the probability of having a super-task of size t and ξ is a subset of VMPSM

states with the following definition:

ξ = {(i, j, k)| Fh(i, j, k) < MSS}

Therefore, probability of success provisioning (Ph) in the hot pool can be obtained as

Ph = 1− (P h
na)

Nh (5.11)

Note that Ph is used as an input parameter in the resource allocation sub-model (Fig. 5.2).

The provisioning model for warm PM is the same with the one for hot PM, though, there

are some differences in parameters:

(a) The arrival rate to each PM in warm pool is

λw =
λst(1−BPq)(1− Ph)

Nw

(5.12)

where Nw is the number of PMs in warm pool.

(b) Every PM in warm pool requires extra time to be ready (hot) for first instantiation. This

time is assumed to be exponentially distributed with mean value of γw.

128 Chapter 5: Interacting Fine-Grained Performance Model

Instantiation rate in warm pool is the same as in hot pool (φh). Like VMPSM for a hot PM

(Fig. 5.4), the model for a warm PM is solved and the steady-states probabilities (πw(i,j,k)),

are obtained. The success probability for provisioning a super-task in warm pool is:

Pw = 1− (Pw
na)

Nw (5.13)

A PM in the cold pool can be modeled as in the warm and hot pool but with different arrival

rate and start up time. The effective arrival rate at each PM in the cold pool is given by:

λc =
λst(1−BPq)(1− Ph)(1− Pw)

Nc

(5.14)

in which Nc is the number of PMs in the cold pool. A cold PM (off machine), requires

longer time than a warm PM to be ready (hot) for the first instantiation. We assume that

the start up time is also exponentially distributed with mean value of γc. The success

probability for provisioning a super-task in the cold pool is given by:

Pc = 1− (P c
na)

Nc (5.15)

From VMPSM, we can also obtain the mean waiting time at PM queue (wtPM) and mean

provisioning time (pt) by using the same approach as the one that led to Eq. (5.6). As a

result, the total delay before starting of actual service time, is given by:

td = wt+ lut+ wtPM + pt (5.16)

Note that all success probabilities (i.e., Ph, Pw and Pc) are dependent on the arrangement

(i.e., number of hot, warm and cold PMs) of pools.

5.4.3 Interaction among Sub-Models

The interactions among sub-models is depicted in Fig. 5.5. VM provisioning sub-

models (VMPSM) compute the steady state probabilities (Ph, Pw and Pc) that at least one

Chapter 5: Interacting Fine-Grained Performance Model 129

VMPSM_hot

VMPSM_cold

RASM

Ph Ph

Pw

Pc Pw

PhBPq

VMPSM_warm

BPq BPq

Figure 5.5: Interaction diagram among sub-models.

PM in a pool (hot, warm and cold, respectively) can accept a super-task for provision-

ing. These probabilities are used as input parameters to the resource allocation sub-model

(RASM). Hot PM sub-model (VMPSM hot) computes Ph which is the input parameter for

both warm and cold sub-models and warm PM sub-model (VMPSM warm) computes Pw

which is the input parameter for the cold sub-model (VMPSM cold). The resource alloca-

tion sub-model compute the blocking probability, BPq, which is the input parameter to VM

provisioning sub-models. As can be seen, there is an inter-dependency among sub-models.

This cyclic dependency is resolved via fixed-point iterative method [65] using a modified

version of successive substitution approach (Algorithm 1).

5.5 Numerical Validation - Pure Performance Model

The resulting sub-models have been implemented and solved using Maple 15 from

Maplesoft, Inc. [66]. The successive substitution method (Algorithm 1) is continued until

130 Chapter 5: Interacting Fine-Grained Performance Model

the difference between the previous and current value of blocking probability in global

queue (i.e., BPq) is less than 10−6. Usually the integrated model converges to the solution

in less than 15 iterations. To validate the analytical solution, we have also built a discrete

event simulator of the cloud center using the Artifex engine [79].

Under different configurations and parameter settings, we obtain two important perfor-

mance metrics, namely, rejection probability of super-tasks (STs) and total response delay.

Mean service time of each task within STs ranges form 20 to 140 minutes. However, it

should be noted that, beyond a certain degree of virtualization (i.e., number of deployed

VMs), the actual service times will increase due to the overhead required to run several

VMs concurrently. To model this effect, we have used publicly available data about server

performance [6]. The continuous line in Fig. 5.6 shows the VMmark performance for

a family of advanced servers under varying degree of virtualization [97], including both

computation and communication time; from this data, we have extracted the normalized

response time, shown by circles, which has subsequently been used in our experiments.

Mean service time represents both computation and communication time for a task within

super-tasks. Identifying higher moments of service time requires more data or benchmarks

from cloud providers [12].

Arrival rate ranges from 1 to 7 STs per minute and global queue size is set to 50 STs.

We assume 15 to 20 PMs in each pool and each PM can run up to 10 VMs simultaneously.

The look-up time for finding a proper PM is assumed to be independent of the number

PMs in the pool and the type of pool (i.e., hot, warm and cold). Look-up rate is set to 10

searches per minute. Mean preparing delay for a warm and cold PM to become a hot PM

(i.e., be ready for first VM instantiation) are assumed to be 1 to 3 and 5 to 10 minutes,

Chapter 5: Interacting Fine-Grained Performance Model 131

Algorithm 1 Successive Substitution Method
Input: Initial success probabilities in pools: Ph0, Pw0, Pc0

Output: Blocking probability in Global Queue: BPq

counter← 0; max← 30; diff← 1

BPq0← RASM (Ph0, Pw0, Pc0)

while diff ≥ 10−6 do

counter← counter + 1

Ph1← VMPSM hot (BPq0)

Pw1← VMPSM warm (BPq0,Ph1)

Pc1← VMPSM cold (BPq0,Ph1,Pw1)

BPq1← RASM (Ph1, Pw1, Pc1)

Ph0 ← Ph1; Pw0 ← Pw1; Pc0 ← Pc1

diff ← |(BPq1 −BPq0) |

BPq0 ← BPq1

if counter = max then

break

end if

end while

if counter = max then

return -1

else

return BPq0

end if

132 Chapter 5: Interacting Fine-Grained Performance Model

performance vs. number of VMs

number of VMs

0 2 4 6 8 10 12 14

V
M

m
ar

k
sc

or
e

0

2

4

6

8

10

12

m
ea

n
se

rv
ic

e
tim

e
pe

r
V

M

0.0

0.5

1.0

1.5

2.0

Figure 5.6: VMmark results and normalized mean service time.

respectively. Mean time to deploy a VM on a hot PM is assumed to be between 1 and 10

minutes. First VM instantiation on a warm and cold PM are to be 5 to 20 and 15 to 30

minutes, respectively. After first VM instantiation on a warm or cold PM, it has already

become a hot PM so that the next VM can be deployed just like a hot PM. Note that in all

plots, analytical model and simulation results are shown by lines and symbols respectively.

First, we characterize the look-up time in pools by presenting the effect of arrival rate

on the success probabilities for two configurations (15 and 17 PMs per pool). As can be

seen in Fig. 5.7(a), the success probabilities decrease smoothly by increasing the arrival

rate. Also, it can be noticed that the curves for Ph, Pw and Pc are equidistant which re-

veals a linear dependency among them with respect to offered load and pool capacity. Fig.

5.7(b) shows that by increasing the arrival rate, the CoV of look-up time is slightly below

one which corresponds to exponential distribution. More specifically, under high traffic

Chapter 5: Interacting Fine-Grained Performance Model 133

intensity, super-tasks have a lower chance to get provisioned in the hot pool so that RAM

needs to check other pools more frequently. Under heavy load, distribution of look-up time

will approach Coxian distribution with CoV between 0.84 and 0.90 while under low load

it is close to exponential distribution. Overall, these results justify the Poisson approxima-

tion of the arrival process to the PMs, as does the degree of match between analytical and

simulation results in Figs. 5.8, 5.9 and 5.10.

(a) Success probabilities on the pools. (b) CoV of look-up time on the pools.

Figure 5.7: Look-up time characteristics.

We also analyze the effects of task service time on rejection probability and total delay

imposed by the cloud center on STs before getting into service. In the first experiment, the

results of which is shown in Fig. 5.8, STs have one task and PMs are permitted to run only

one VM. Fig. 5.8(a) shows, at a fixed arrival rate (1 STs/min) and different numbers of

PMs in each pool, increasing mean service time, raising the rejection probability linearly.

Increasing the system capacity (i.e., the number of PMs in each pool) reduces the rejection

probability. Also, it can be seen that for tasks shorter than 40 min, extending the capacity

134 Chapter 5: Interacting Fine-Grained Performance Model

Stable Regime

Transient Regime

(a) Task Rejection probability.

Maximum Gain

(b) Total delay for a super-task.

Figure 5.8: Single VM deployed on each PM.

of system has negligible effect on rejection probability, while for tasks of longer duration

(i.e., from 40 to 140 min) rejection probability drops almost linearly. The maximum gain

is obtained at 140 minutes. Fig 5.8(b) shows that longer service times will result in longer

imposed delays on STs. It can be seen that for any capacity, there is a turning point beyond

which total delay increases sharply. For instance when the capacity is 45 PMs (i.e., 15 PMs

in each pool), the turning point is 20 minutes while for a capacity of 60 PMs (i.e., 20 PMs

in each pool), the turning point is 40 minutes. Cloud providers should operate in the stable

regime (i.e., before turning points). They can be alerted by such turning points to add more

resources and avoid entering transient regime. In addition, it can be observed that for the

given configuration, adding five PMs to each pool (i.e., comparing 15 PMs with 20 PMs at

60 min) can reduce the delay by up to a half.

We also calculate the two performance metrics under different arrival rates while fixing

the average service time at 80 minutes (Fig. 5.9). One turning point can be noticed in

Chapter 5: Interacting Fine-Grained Performance Model 135

Stable Regime

Transient Regime

(a) Task Rejection probability.

Stable Regime

Transient Regime

Unstable Regime

(b) Total delay for a super-task.

Figure 5.9: Single VM on each PM.

rejection probability curves (Fig. 5.9(a)) at which rejection trend increases suddenly. Such

points (e.g., Fig. 5.9(a), 4 STs/min for 20 PMs in each pool) may suggest the appropriate

time to upgrade or inject more resources (i.e., PMs) so that prevent of an undesired rejection

rate. In case of total delay, two turning points can be identified (Fig. 5.9(b)): after the first

one , total delay grows sharply while at the second point increasing the arrival rate almost

has no effect (i.e., unstable regime). The transient regime, the range between two turning

points, is attributed to the size of global queue. The longer the global queue is, the larger

the transient range is going to be which is expected.

In the last experiment, we examine the effect of super-task size on task rejection prob-

ability and total delay. Each PM can run up to ten VMs simultaneously and a super-task

may request up to all of the available VMs in a PM. Note that the aggregate arrival rate

is set to 6 tasks/hr, however the effective arrival rate of super-tasks is various for different

super-task size. For instance, if the average super-task size was 3, then the effective arrival

136 Chapter 5: Interacting Fine-Grained Performance Model

(a) Task Rejection probability.

Maximum Gain

(b) Total delay for a super-task.

Figure 5.10: Ten VMs are allowed on each PM.

rate of super-tasks would be 2 STs/hr. As can be seen by increasing the size of super-

tasks the rejection probability and total delay reduce sharply. The bigger super-task size

will result in the lower number of arrivals as well as lower deviation of super-task size. In

other words, in case of large super-tasks, they are more likely to be almost in the same size

which improves the utilization of the cloud center. Notice that, in this work we adopted

total acceptance policy for super-task servicing. Maximum gain is occurred at arrival rate

of 4 STs/min for different pool arrangements. Also, it can be seen that the results from

analytical model and the simulation are in a good agreement.

5.6 Failure and Repair Effects of Cloud Resources

In this Section, we integrate an availability model with the interacting analytical sub-

models that we introduced in the previous sections of this Chapter. The availability model

Chapter 5: Interacting Fine-Grained Performance Model 137

captures the failure/repair effects of cloud resources. Our results can be used by an admis-

sion control to prevent the cloud center from entering unstable regime of operation. The

results also reveal practical insights into capacity planning for cloud computing centers.

5.7 Availability Model

The availability model deals with the failure of PMs, repairing process and employ-

ment of cold PMs in case of failure in running machines. This model realizes by a three-

dimensional CTMC in which (i, j, k) indicate the initial number of PMs in the hot, warm

and cold pool respectively. Fig. 5.11 depicts an example of availability model when the

cloud center has 2, 1 and 2 PMs in the hot, warm and cold pool respectively. The hot and

warm PMs can fail with rate θh and θw. To maintain a certain level of availability, upon

failure of a hot PM, one warm PM substitutes immediately. Repair units repair broken PMs

and return them to the hot, warm or cold pool. Each repair unit repairs a PM with rate β.

If the hot pool is in need of a PM, the repaired PM goes to the hot pool; otherwise it goes

to warm and if none of them (i.e., the hot and warm pools) require a PM, the repaired one

shots down (i.e., goes to the cold pool). When the number of PMs in either hot or warm

pool gets lower than a pre-defined value (e.g., in Fig. 5.11 lower than 2 and 1) cold PMs

are fired up to serve the target pool. The mean start up time is assumed to be 1/SUc.

Fig. 5.12 represents a general availability model for arbitrary number of PMs in each

pool.

138 Chapter 5: Interacting Fine-Grained Performance Model

0,0,11,0,1

0,0,22,1,2

SUc

2θh

β 2β

2,0,2

2,1,1

1,0,2

2,0,1

0,0,01,0,02,1,0 2,0,0

2θh+θw θh

2β

θh

θh

2θh

2θh

2θh+θw

2θh+θw

2SUc
2SUc

SUc SUc SUc

2β

2β

2β 2β

2β

2β

Cloud Center is

unavailable in

these states

2β

Figure 5.11: The availability model for 5 PMs in the pools.

i,j-1,ki,j,k

iθh+jθw

SUc

β

β

2β

i,j-1,k-1i,j,k-1

i,j-2,k

iθh+(j-1)θw

iθh+jθw

2β

2SUc

i,j,k-2

SUc

2β

...

i,1,k-1

i,0,k

kSUc

i,2,k-2

(k
-1

)S
U

c

...

i,j,0

0,0,k...

...

...

1,0,k-1

2,0,k-2

i,0,0

...

...

...

... ...i-1,0,0

iθh

jβ

0,0,0

jβ

(i-1)θh

jβ

jβ

jβ

jβ

iθh+(j-2)θw iθh

jβ

iθh+jθw

0,0,k-1

θh

jβ

1,0,k-2 0,0,k-2

θh

jβ jβ

2θh

…

(k
-2

)S
U

c

kSUc

(k
-1

)S
U

c
(k

-2
)S

U
c

...
(k

-1
)S

U
c

(k
-2

)S
U

c

jβ

jβ

jβ

…

iθh+θw

iθh+2θw

Cloud Center is

unavailable in

these states

(k
-2

)S
U

c

θh

jβ

3β

3β

3β

iθh+(j-1)θw

iθh+jθw

θh

2θh+θw

3θh+θw

iθh+θw

Figure 5.12: General availability model.

Chapter 5: Interacting Fine-Grained Performance Model 139

5.7.1 Interaction among sub-models

The interactions among sub-models is depicted in Fig. 5.13. VM provisioning sub-

models (VMPSM) compute the steady state probabilities (Ph, Pw and Pc) that at least one

PM in a pool (hot, warm and cold, respectively) can accept a super-task for provision-

ing. These probabilities are used as input parameters to the resource allocation sub-model

(RASM). Hot PM sub-model (VMPSM hot) computes Ph which is the input parameter

for both warm and cold sub-models; warm PM sub-model (VMPSM warm) computes Pw

which is the input parameter for the cold sub-model (VMPSM cold). The resource al-

location sub-model (RASM) computes the blocking probability, BPq, which is the input

parameter to VM provisioning sub-models. Another type of interaction is between perfor-

mance model (including RASM and VMPSMs) and the availability model. For each state

in the availability model the desired statistics are calculated and then finally the effective

value of each performance metrics is obtained. As can be seen, there is an inter-dependency

among performance sub-models. This cyclic dependency is resolved via fixed-point itera-

tive method [28] using a modified version of successive substitution approach.

5.8 Numerical Validation - Availability Model

The successive substitution method is continued until the difference between the previ-

ous and current value of blocking probability in global queue (i.e., BPq) is less than 10−6.

The integrated model converges to the solution in 8 iterations or less.

We show the effects of changing arrival rate, task service time, number of PMs in

each pool, number of VMs on each PM and super-task size on the interested performance

140 Chapter 5: Interacting Fine-Grained Performance Model

VMPSM_cold

RASM

Ph

Pc

Ph

BPq

VMPSM_warm

Ph

BPq

Pw

Pw

VMPSM_hot

Performance Model

Effective Task

Rejection Probability

and Effective Total

Servicing Delay

Performance Model Outputs:

· Task Rejection Probability

· Total Servicing Delay

BPq

BPq

Availability

Model

Figure 5.13: Interaction between sub-models.

indicators. Arrival rate ranges from 250 to 600 STs per hour. Mean service time of each

task within STs ranges form 20 to 140 minutes. we assume 15 to 20 PMs in each pool

and each PM can run 2 VMMs and up to 6 VMs simultaneously. The look-up time for

finding a proper PM is assumed to be independent of the number of PMs in the pool and

the type of pool (i.e., hot, warm and cold). Look-up rate is set to 825 searches per hour.

Mean preparation delay for a warm and cold PM to become a hot PM (i.e., be ready for

first VM instantiation) are assumed to be 1 to 3 and 5 to 10 minutes, respectively. Mean

time to deploy a VM on a hot PM is assumed to be between 4 and 10 minutes. First VM

instantiation on a warm and cold PM are to be between 5 to 20 and 15 to 30 minutes,

respectively. After first VM instantiation on a warm or cold PM, it has already become a

hot PM so that the next VM can be deployed just like a hot PM. The Mean Time To Failure

Chapter 5: Interacting Fine-Grained Performance Model 141

(MTTF) for hot and warm PMs (1/θh and 1/θw) are assumed to be in the range of 20 to

1000 and 100 to 3000 hours, respectively. The number of repair units is set to 5 and the

range of 1 to 5 hours assumed for mean repair time (1/β) of a PM. The size of global queue

is set to 50 super-tasks (ST).

(a) Rejection probability. (b) Total delay on a super-task.

Figure 5.14: arrival-rate=900 tasks/hour.

In the first experiment, the results of which is shown in Figs. 5.14(a) and 5.14(b),

STs have one task and PMs are permitted to run 2 VMMs each of which hosts one VM.

Fig. 5.14(a) shows (at a constant arrival rate of 900 STs/hr and different numbers of PMs

in each pool) that by increasing the mean service time the rejection probability increases

almost linearly. Also, we noticed that curves (for pool capacity 15-20 PMs/pool) in Fig.

5.14(a) are almost equidistant. Fig 5.14(b) shows that a longer service time will result in

a longer total delay on STs. In addition, it can be observed that by increasing the capacity

of system (i.e., having more PMs in the pools) the maximum gains occurs at the longest

service time (i.e. 140 minutes).

142 Chapter 5: Interacting Fine-Grained Performance Model

Stable Regime

Sharp increasing regime

(a) Rejection probability.

Stable regime

Transient regime

Saturation regime

(b) Total delay on a super-task.

Figure 5.15: service-time=120 minute.

Under different arrival rates, we also determine the two performance metrics while the

average service time is set to 120 min (Figs. 5.15(a) and 5.15(b)). One turning point

can be noticed in rejection probability curves (Fig. 5.15(a)) at which rejection probability

increases suddenly. Such points (e.g., Fig. 5.15(a), 400 STs/hour for 20 PMs in each pool)

may suggest the appropriate time to upgrade or inject more resources (i.e., PMs). However,

in case of total delay, two turning points (three regimes of operation) can be identified (Fig.

5.15(b)): the first regime (i.e., stable regime) is the region in which the cloud providers

would like to operate. An admission control may use provided information here and helps

the cloud centers to operate in such regime by not accepting extra requests. Transient

regime is in between two turning points which the total delay increases sharply. Cloud

centers should avoid entering such region since the violation of SLA is about to happen.

However, since the transient regime is not too narrow, it is possible for cloud center to

return to stable zone after a short time (i.e., the admission control has enough time to adjust

Chapter 5: Interacting Fine-Grained Performance Model 143

the new admissions). The transient regime is attributed to the size of global queue. The

longer the global queue is, the wider the transient regime is going to be. In saturation

regime, the super-tasks are experiencing the highest possible amount of delay and this zone

is not in the interest of both cloud service providers and cloud customers.

(a) Rejection probability.

Maximum gain

Maximum
queuing delay

Processing
delays

are dominant

(b) Total delay on a super-task.

Figure 5.16: service-time=120 minute and arrival-rate=2500 tasks/hour.

In the last experiment, (Figs. 5.16(a) and 5.16(b)) we examine the effect of super-task

size on task rejection probability and total delay. Each PM run 2 VMMs and every VMM

hosts 3 VMs; a super-task may request up to all of the available VMs in a PM (i.e., all

6 VMs). Note that the aggregate arrival rate is set to 2500 tasks/hr, however the effective

arrival rate of super-tasks is various for different super-task size. For instance, if the average

super-task size was five, then the effective arrival rate of super-tasks would be 500 STs/hr.

As can be seen by increasing the size of super-tasks the rejection probability and total delay

reduce sharply. Since the size of super-tasks is truncated up to the maximum number of

VMs allowed on each PM (here, up to 6 VMs), the bigger super-task size will result in the

144 Chapter 5: Interacting Fine-Grained Performance Model

lower number of arrivals as well as lower deviation of super-task size. As can be seen, by

increasing the capacity the maximum delay is occurred when the mean size of STs is 3 and

the maximum gain (i.e., reduction of delay) is obtained when the mean size of STs is 4.

For STs of size 5 or bigger, the dominant imposed delays are the processing delays (i.e,

resource assigning and VM provisioning delays) as opposed to the queuing delays.

5.9 Summary of the Chapter

In this Chapter, we presented a performance model suitable for analyzing the service

quality of large sized IaaS clouds, using interacting stochastic models. We examined the

effects of various parameters including ST arrival rate, task service time, the virtualization

degree, and ST size on task rejection probability and total response delay. The stable,

transient and unstable regimes of operation for given configurations have been identified so

that capacity planning is going to be a less challenging task for cloud providers.

Validation of analytical results through extensive simulation has shown that our ana-

lytical model is sufficiently detailed to capture all realistic aspects of resource allocation

process, instance creation and instantiation delays of a modern cloud center, while main-

taining a good tradeoff between accuracy and tractability. Consequently, cloud providers

can obtain a reliable estimation of response time and blocking probability that will result

in avoidance of SLA violation.

We have also evaluated an availability model on top of the interacting performance

model in order to capture the failure, repair and migration process of PMs among server

pools. Using the availability model, we calculated the effective value of each performance

measure.

Chapter 6

Pool Management and Heterogeneity in

Cloud Centers

in this Chapter, we first develop and evaluate tractable functional performance sub-

models and their interaction model. We construct separate sub-models for internal and

external servicing of a complex cloud center. By introducing a new component to our

analytical model, a Pool Management Module (PMM), our performance model now sup-

ports inter-pool communication [50]. PMs can be moved among pools in order to maintain

acceptable availability, response time and power consumption at the same time. More

specifically, PMM describes the dynamics of server pools and provides the steady-state

pools arrangement. In the last part of this Chapter, we also propose and examine a layered

stochastic performance model applicable to cloud centers with wide range of heteroge-

neous physical and virtual resources as well as task characteristics without sacrificing the

scalability, granularity and simplicity [49].

This Chapter is organized as follows: in Section 6.1, we present the details of the pool

145

146 Chapter 6: Pool Management and Heterogeneity in Cloud Centers

G
lo

b
a
l

Q
u
e
u
e

VM Provisioning Module

Instance

Creation

VM Start up

P
M

Q
u
e
u
e VM

run-time
out

Time
Super-task

Arrival
Global Queuing

PM Provisioning &

Pool Management

Queuing at

each PM
VM Provisioning Actual Service

Time

Super-task blocking due

to insufficient capacity

Super-task blocking due

to lack of room in queue

in

FIFO FIFO

Figure 6.1: The steps of servicing and corresponding delays.

management scheme. Section 6.2 elaborates analytical sub-models; interactions and the

degree of scalability for each sub-model are discussed. The numerical validation of pool

schema is presented in Section 6.3. We describe our heterogeneous performance model in

Section 6.4. Section 6.5 include the numerical results for the heterogeneous performance

model. Finally, Section 6.6 summarizes and highlights the Chapter contributions.

6.1 Analytical Model

In IaaS cloud, when a request is processed, a pre-built or customized disk image is used

to create one or more VM instances. In this work, we assume that pre-built images fulfill all

user requests. We assume that Physical Machines (PMs) are categorized into three server

pools: hot (i.e., with running VMs), warm (i.e., turned on but without running VM) and

cold (i.e., turned off) [28, 27]. All PMs and VMs are homogeneous and each PM has two

Virtual Machine Monitors (VMM) that configure and deploy VMs on the PM. Instantiation

Chapter 6: Pool Management and Heterogeneity in Cloud Centers 147

of a VM from an image and provisioning it on hot PMs has the minimum delay compared

to warm and cold PMs. Warm PMs require more time to be ready for provisioning and

cold PMs require additional time to be started up before a VM instantiation. In this work

we allow users to request more than one VM by submitting a super-task. A super-task

may contain more than one task, each of which requires one VM. Each unit tasks has i.i.d.

exponentially distributed service time; the size of super-tasks can be generally distributed.

If a user submits a super-task, it is very likely that individual tasks within the super-

task require a high degree of interaction. As a result, we assume that all tasks within a

super-task should be provisioned on the same PM. This assumption has two consequences.

First, the super-task size must be limited to the number of VMs on a single PM. Second,

all tasks within a super-task must begin service at the same time, otherwise the super-task

will be rejected. The latter policy is often referred to as total acceptance policy [87]. The

other approach, known as partial acceptance, may split a super-task so that individual tasks

run on different PMs. While this policy may reduce the super-task rejection probability, it

may also increase inter-task communication overhead and idle waiting, and, consequently,

extend the overall service time. In this work, we assume total acceptance policy, while the

performance of partial acceptance policy remains a promising topic for future work.

The steps incurred in servicing a super-task are shown in Fig. 6.1. User requests (super-

tasks) are submitted to a global finite queue and then processed on a first-in, first-out basis

(FIFO). A super-task that finds the queue full, will be rejected immediately. Once the

super-task is admitted to the queue, it must wait until the Resource Assigning Module

(RAM) processes it (first delay), as follows. First, RAM checks the hot pool for a PM with

sufficient capacity. If such a PM can’t be found, RAM moves on to the warm pool. If a PM

148 Chapter 6: Pool Management and Heterogeneity in Cloud Centers

can’t be found there, RAM moves on to the cold pool. Eventually, a super-task is either

assigned to a PM (second delay), or rejected due to insufficient system capacity. Once the

super-task is assigned to one of the PMs, it will have to wait in that PM’s input queue (third

delay) until the VM Provisioning Module (VMPM) instantiates and deploys the necessary

VMs (fourth delay), when the actual service starts. The overall response time is, then,

the sum of the delays mentioned above and the actual service time. When a running task

finishes, the capacity used by the corresponding VM is released and becomes available for

servicing the next (super-)task.

The management of pools and movement of PMs among them is the primary responsi-

bility of the Pool Management Module (PMM). While the first criterion that governs PMM

operation is to minimize the cloud center response time and task rejection probability, the

obvious solution that would keep all PMs in the hot pool (i.e., always on) would lead to ex-

cessive energy consumption. Hence the PMM needs to switch idle PMs from hot to warm

pool, or from warm to cold pool, after a certain interval of inactivity, the duration of which

may be altered to suit the traffic load and other operational parameters, as will be explained

below.

To model the behavior of this system, we design three stochastic sub-models, each

of which captures the details of the respective management module (RAM, VMPM, and

PMM) and combine them into an overall model. then, we solve this model to compute the

cloud performance metrics: task rejection probability and mean response delay as functions

of variations in workload (super-task arrival rate, super-task size, task mean service time,

number of VMs per PM), system capacity (i.e., number of PMs in each pool), and design

parameters such as the rate by which idle hot PM powers down to either warm or cold

Chapter 6: Pool Management and Heterogeneity in Cloud Centers 149

pool. We describe our analysis in detail in the following sections, using the symbols and

acronyms listed in Table 6.1.

Symbol Description

RAM Resource Assigning Module

VMPM x Virtual Machine Provisioning Module for a PM in the pool x; x could

be hot, warm or cold

PMM Pool Management Module

RASM Resource Allocation Sub-Model

VMPSM x Virtual Machine Provisioning Sub-Model for a PM in the pool x; x

could be hot, warm or cold

PMSM Pool Management Sub-Model

MSS Maximum Super-task Size

m Maximum No. of VMs on a PM

pi Probability of having a super-task with size i

λst Mean arrival rate of super-tasks

Lq Size of global input queue

Ph, Pw, Pc Probability of successful search in hot, warm and cold pool

1/αh, 1/αw, 1/αc Mean look up time in hot, warm and cold pool

BPq Blocking probability due to lack of room in the global queue

BPr Blocking probability due to lack of capacity in the cloud center

Preject Total probability of blocking (BPq +BPr)

Pi The probability by which a hot PM becomes idle

1/R Mean searching time for finding an idle hot PM

150 Chapter 6: Pool Management and Heterogeneity in Cloud Centers

1/SUw Mean start up time for a warm PM to become a hot PM

1/SUc Mean start up time for a cold PM to become a hot PM

1/FRw Mean time in which the lack of resource (PM) in the hot pool is

detected and a PM from warm pool becomes hot

1/FRc Mean time in which the lack of resource (PM) in the hot pool is

detected and a PM from cold pool becomes hot

σ Desired No. of PMs that PMM tries to maintain in the warm pool for

promoting the resiliency of the cloud center

wt Mean waiting time in global queue

lut Mean look up delay among pools

φh, φw, φc Instantiation rate of a VM on a PM in the hot, warm or cold pool

λh, λw, λc Arrival rate to a PM in the hot, warm and cold pool

Nh, Nw, Nc Number of PMs in the hot, warm and cold pool

PMwt Mean waiting time in a PM queue

pt Mean VM provisioning time

td Mean total delay for a task before getting into actual service

Table 6.1: Symbols and corresponding descriptions.

Chapter 6: Pool Management and Heterogeneity in Cloud Centers 151

6.2 Integrated Stochastic Models

Due to high complexity of cloud centers, the proposed monolithic models were hard

to analyze and extend. By introducing interacting analytical sub-models, the complexity

of system is divided so that they can be analyzed accurately in order of processing steps.

Moreover, the sub-models are scalable enough to capture the flexibility of the cloud com-

puting paradigm.

In this paper, we implement the sub-models using interactive Continuous Time Markov

Chain (CTMC). The sub-models are interactive such that the output of one sub-model is

input to the other ones and vice versa. Table 6.2 shows the modules and their corresponding

sub-models, which will be discussed in detail in the following sections.

Table 6.2: Modules and their corresponding sub-models.

Module Stochastic sub-model

RAM RASM

VMPM hot VMPSM hot

VMPM warm VMPSM warm

VMPM cold VMPSM cold

PMM PMSM

6.2.1 Resource Allocation Sub-Model

The resource allocation process is described in the Resource Allocation Sub-Model

(RASM) shown in Fig. 6.2. RASM is a two dimensional CTMC that records the number

of super-tasks in the global queue as well as the current pool on which provisioning is

taking place. Since the number of potential users is high and a single user typically submits

152 Chapter 6: Pool Management and Heterogeneity in Cloud Centers

0,0

λst

Lq,h1,h0,h

Lq,c1,c0,c

Lq,w1,w0,w

λst λst

αh(1-Ph)Pwαw

αw(1-Pw)αw(1-Pw)αw(1-Pw)

αh(1-Ph)αh(1-Ph)

λst

λst

...

...

...

Pwαw

Pwαw

λst

λst

λst

αc(1-Pc) αc(1-Pc)

αc(1-Pc)

H
o

t P
o

o
l

W
a

rm
 P

o
o

l
C

o
ld

 P
o

o
l

Pcαc

Pcαc

Pcαc

Phαh Phαw Pwαw Pwαw

Figure 6.2: Resource Allocation Sub-Model (RASM).

super-tasks at a time with low probability, the super-task arrival can be adequately modeled

as a Poisson process [30] with rate λst. Each state of Markov chain is labeled as (i, j),

where i indicates the number of super-tasks in queue and j denotes the pool on which

the leading super-task is under provisioning. State (0, 0) indicates that system is empty

which means there is no request under provisioning or in the queue. Index j can be h, w

or c that indicate current super-task is undergoing provisioning on hot, warm or cold pool

respectively. The global queue size is Lq and one more super-task can be at the deployment

unit for provisioning thus, the capacity of system is Lq + 1.

Let Ph, Pw and Pc be the success probabilities of finding a PM that can accept the

current super-task in the hot, warm and cold pool respectively. We assume that 1/αh, 1/αw

and 1/αc are the mean look up delays for finding an appropriate PM in hot, warm and cold

Chapter 6: Pool Management and Heterogeneity in Cloud Centers 153

pool respectively. Upon arrival of first super-task, system moves to state (0, h) which means

the super-task will be provisioned immediately in the hot pool. Afterwards, depending on

the upcoming event, three possible transitions can occur:

(a) Another super-task has arrived and system transits to state (1, h) with rate λst.

(b) A PM in hot pool accepts the super-task so that system moves back to state (0, 0) with

rate Phαh.

(c) None of PMs in hot pool has enough capacity to accept the super-task, so the system

examines the warm pool (i.e., transit to state (0, w)) with rate (1− Ph)αh.

On state (0, w), RASM attempts to provision the super-task on warm pool. If one of the

PMs in the warm pool can accommodate the super-task, the system will get back to (0, 0),

otherwise RASM examines the cold pool (i.e., transition from state (0, w) to (0, c)). If none

of the PMs in cold pool can provision the super-task, the system moves back from (0, c)

to (0, 0) with rate (1 − Pc)αc which means the user request (super-task) will get rejected

due to insufficient resources in the cloud center. During the provisioning in cold pool,

another super-task may arrive and takes the system to state (1, h) which means there is one

super-task in deployment unit and one awaiting in global queue. Finally, the super-task

under provisioning decision leaves the deployment unit, once it receives a decision from

RASM and the next super-task at the head of global queue will go under provisioning. In

this sub-model, arrival rate of super-task (λst) and look up delays (1/αh, 1/αw and 1/αc)

are exogenous parameters and success probabilities (Ph, Pw and Pc) are calculated from

the VM provisioning sub-model. The VM provisioning sub-model will be discussed in the

next Section.

154 Chapter 6: Pool Management and Heterogeneity in Cloud Centers

Using steady-state probabilities π(i,j), blocking probability can be calculated. Super-

tasks may experience two kinds of blocking events:

(a) Blocking due to a full global queue occurs with the probability of

BPq = π(Lq ,h) + π(Lq ,w) + π(Lq ,c) (6.1)

(b) Blocking due to insufficient resources (PMs) at pools occurs with the probability of

[34]

BPr =

Lq∑
i=0

αc(1− Pc)
αc + λst

π(i,c) (6.2)

The probability of reject is, then, Preject = BPq + BPr. In order to calculate the mean

waiting time in queue, we first establish the probability generating function (PGF) for the

number of super-tasks in the queue [86], as

Q(z) = π(0,0) +

Lq∑
i=0

(π(i,h) + π(i,w) + π(i,c))z
i (6.3)

The mean number of super-tasks in queue is [87]

q = Q′(1) (6.4)

Applying Little’s law [57], the mean waiting time in the global queue is given by (first

delay):

wt =
q

λst(1−BPq)
(6.5)

Look up time among pools can be considered as a Coxian distribution with 3 steps (Fig.

6.3).

Therefore according to [94], the look-up time (second delay) can be calculated as follows.

lut =
1/αh + (1− Ph)((1/αw) + (1− Pw)(1/αc))

1−BPq
(6.6)

Chapter 6: Pool Management and Heterogeneity in Cloud Centers 155

Acc.

cw Rej.

P h

1-Ph

P cPw

1-Pw 1-Pc

Figure 6.3: Three steps of look-up delays among pools.

0,0,0

MSS-3,2,10,1,10,0,1

LQ,2,0MSS-2,2,01,1,00,1,0

λ1 λ2 λMSS

...λ1 ...

φh φh
2φh

μ

...

μ

λ1 LQ-1,2,1 LQ,2,1...

LQ,0,m

LQ,1,m-1

φh

LQ-1,1,m-1
λ1

λ1

mμ

(m-1)μ

LQ-1,0,m

mμ
φh

...0,0,m

φh

0,0,m-1 λ1

mμ

(m-1)μ φh

...

λ1

(m-1)μ

λ1

λ1
0,1,m-1

λ1

φh

...

...

μ
μ

μ

λ1

2φh

2φh 2φh 2φh

λMSS

...

λ2

λ1

λMSS

...

λ1

λMSS

...

λ1

λMSS

...

λ2

λMSS

... λ2

λMSS

...

λ2

λMSS

...

λ2

...

...

2φh

2φh

2φh

(m-1)μ

λ1

λMSS

...

λ2

λMSS

...

λ2

Figure 6.4: Virtual Machine Provisioning Sub-Model for a PM in the hot pool
(VMPSM hot).

6.2.2 VM Provisioning Sub-Model

Virtual Machine Provisioning Sub-Model (VMPSM) captures the instantiation, deploy-

ment and provisioning of VMs on a PM. VMPSM also incorporates the actual servicing of

each task (VM) on a PM. Note that each task within super-task is provisioned with an indi-

vidual VM, but RASM makes sure that all tasks within a super-task are provisioned at the

156 Chapter 6: Pool Management and Heterogeneity in Cloud Centers

same PM. Fig. 6.4 shows the VMPSM (a CTMC) for a PM in the hot pool. As we assume

homogeneous PMs, VMs, and tasks, all VMPSMs for the PMs in the hot pool are identical

in terms of arrival and instantiation rates. The same holds for the PMS in the warm and

cold pool – they can be modeled with the same VMPSM, though with a different arrival

and instantiation rates. Consequently, each pool (hot, warm and cold) can be modeled as a

set of VMPSMs.

Each state in Fig. 6.4 is labeled by (i, j, k) in which i indicates the number of tasks

in PM’s queue, j denotes the number of tasks that is under provisioning by VMMs and k

is the number of VM that are already deployed on the PM. Since we assume two VMMs

installed on each PM, at most tasks can be provisioned simultaneously on a PM. Note that

we set the queue size at each PM to m, the maximum number of VMs that can be deployed

on a PM. Let φh be the rate at which a VM can be deployed on a PM at hot pool and µ be

the service rate of each VM. So, the total service rate for each PM is the product of number

of running VMs by µ. State (0, 0, 0) indicates that the PM is empty and there is no task

either in the queue or in the instantiation unit. Depending on the size of arriving super-task,

model transits to one of the states in {(0, 1, 0), (0, 2, 0), · · · ,(MSS − 2, 2, 0)}. Since all

tasks within a super-task are to be provisioned at the same PM, maximum super-task size

(MSS) is smaller or equal to m. The arrival rate to each PM in the hot pool is given by:

λh =
λst(1−BPq)

Nh

(6.7)

in which Nh is the number of PMs in the hot pool. Note that BPq, used in (6.1), is obtained

from RASM. In Fig. 6.4, {λi, i = 1..MSS} is given by λi = λhpi; here pi is the probability

of having a super-task of size i. We examine truncated geometric and uniform distributions

for numerical experiment.

Chapter 6: Pool Management and Heterogeneity in Cloud Centers 157

The state transition in VMPSM can occur due to super-task arrival, task instantiation

or service completion. From state (0, 0, 0), system can move to state (0, 2, 0) with rate λ2

(i.e., super-task with size 2). From (0, 2, 0), system can transit to (0, 1, 1) with rate φh (i.e.,

instantiation rate) or upon arriving a super-task with size k, moves to state (k, 2, 0). From

(0, 1, 1), system can move to (0, 0, 2) with rate φh, transits to (0, 1, 0) with rate µ (i.e.,

service completion rate), or again upon arriving a super-task with size k, system can move

to state (k − 1, 2, 1) with rate λk. A PM can not accept a super-task, if there is not enough

room to accommodate all tasks within a super-task. Suppose that πh(i,j,k) is the steady-state

probability for the hot PM model (Fig. 6.4) to be in the state (i, j, k). Using steady-state

probabilities, we can obtain the probability that at least one PM in hot pool can accept

the super-task for provisioning. At first we need to compute the probability that a hot PM

cannot admit a super-task for provisioning (P h
na). Let Fh be the free capacity of the hot PM

at each state:

Fh(i, j, k) = m− (i+ j + k)

P h
na is then given by:

P h
na =

∑
x∈ξ

MSS∑
t=Fh+1

πhxpt (6.8)

where pt is the probability of having a super-task of size t and ξ is a subset of VMPSM’s

states in which there is a chance of blocking for super-tasks:

ξ = {(i, j, k)| Fh(i, j, k) < MSS}

Therefore, probability of successful provisioning (Ph) in the hot pool can be obtained as

Ph = 1− (P h
na)

Nh (6.9)

158 Chapter 6: Pool Management and Heterogeneity in Cloud Centers

Note that Ph is used as an input parameter in the resource allocation sub-model (Fig. 6.2).

The provisioning model for warm PM is the same with the one for hot PM, though, there

are some differences in parameters:

(a) The arrival rate to each PM in the warm pool is

λw =
λst(1−BPq)(1− Ph)

Nw

(6.10)

where Nw is the number of PMs in warm pool.

(b) Every PM in warm pool requires extra time to be ready (hot) for first instantiation. This

time is assumed to be exponentially distributed with mean value of 1/γw.

Instantiation rate in warm pool is the same as in hot pool (φh). Like VMPSM for a hot PM

(Fig. 6.4), the model for a warm PM is solved and the steady-states probabilities (πw(i,j,k)),

are obtained. The success probability for provisioning a super-task in warm pool is:

Pw = 1− (Pw
na)

Nw (6.11)

A PM in the cold pool can be modeled as in the warm and hot pool but with different arrival

rate and start up time. The effective arrival rate at each PM in the cold pool is given by:

λc =
λst(1−BPq)(1− Ph)(1− Pw)

Nc

(6.12)

in which Nc is the number of PMs in the cold pool. A cold PM (off machine), requires

longer time than a warm PM to be ready (hot) for the first instantiation. We assume that

the start up time is also exponentially distributed with mean value of 1/γc. The success

probability for provisioning a super-task in the cold pool is given by:

Pc = 1− (P c
na)

Nc (6.13)

Chapter 6: Pool Management and Heterogeneity in Cloud Centers 159

From VMPSM, we can also obtain the mean waiting time at PM’s queue (third delay:

PMwt) and mean provisioning time (fourth delay: pt) by using the same approach as the

one that led to Eq. (6.5). As a result, the total delay before starting of actual service time,

is given by:

td = wt+ lut+ PMwt + pt (6.14)

Note that all success probabilities (i.e., Ph, Pw and Pc) are input parameters to the resource

allocation sub-model (Fig. 6.2).

6.2.3 Pool Management Sub-Model

Pool Management Sub-Model (PMSM) captures the details of pools management in

the cloud center. We model PMSM as a three dimensional CTMC, Fig. 6.5. The system

starts with state (i, j, k) which indicates that i, j and k PMs are in the hot, warm and cold

pool respectively. If next search in hot pool was successful (probability of Ph), system will

remain in the starting state, state (i, j, k), otherwise PMSM will bring one of the warm PMs

into the hot pool (requires some time). Such transition occurs with the rate of FRw which

is defined as:

FRw =
1

λstBPq(1− Ph) + (1/SUw)
(6.15)

in which (1/SUw) is the mean time that a warm PM becomes a hot PM.

In state (i, j, k), if one of the hot PM becomes idle (i.e., no running VM), the PMSM

moves the idle hot PM to cold pool (i.e., turn off) by going to state (i − 1, j, k + 1). If

all PMs become idle, PMSM will move all the hot PMs to the cold pool and maintain a

minimum number of PMs (here we assume 2 PMs) in the warm pool. As can be seen from

Fig. 6.5, state (i+ j−1, 1, k), PMSM turns on a cold PM machine whenever the number of

160 Chapter 6: Pool Management and Heterogeneity in Cloud Centers

i,j,k i+1,j-1,k i+j-2,2,k

RPi

...

FRw

i+j-1,2,k-1

SU

i+j,1,k-1

FRw

i+j,2,k-2

SU

i+j,0,k

FRw

SU

i+j+k,0,0...

FRc

i+j+1,0,k-1

FRc

i+j+1,1,k-2

i+j+1,2,k-3

SU

SU

i+j-1,1,k

FRw

FRw

F
R

w

...

...

i+j+K-1,0,1

i+j+k-1,1,0

SU

F
R

w

FRc

RPi

RPi

RPi

RPi

RPiRPiRPi

RPi

RPi

RPi

RPi

i+j+k-2,2,0

F
R

w

RPi

RPi

FRw

FRw

RPi

FRw

RPi

i-1,j,k+1

0,2,i+k+j-2

...

RPi

RPi

RPi

F
R

c

FRw

F
R

w
F

R
w

FRc

Initial Configuration

No Running Task All PMs are Busy

Figure 6.5: Pool Management Sub-Model (PMSM).

warm PMs gets lower than 2. If the system is in state (i+j, 0, k), in which there is no warm

PM at the moment, upon arrival of a new super-task, PMSM will try to accommodate the

new super-task on the current hot PMs. In case of lack of capacity for new arrival, PMSM

borrows a PM from cold pool with the rate FRc, moving to state (i+ j + 1, 0, k − 1).

FRc =
1

λstBPq(1− Ph) + (1/SUc)
(6.16)

where (1/SUc) is the mean time that a cold PM becomes a hot PM.

The state (i+ j+k, 0, 0) indicates that all PMs in the cloud center are hot and servicing

users’ tasks. At any state, if the number of PMs in the warm pool is less than a predefined

minimum (e.g., 2 PMs in Fig. 6.5), an idle hot PM is moved to the warm pool at rate RPi,

otherwise the idle hot PM is moved to the cold pool (i.e., shut down).

Chapter 6: Pool Management and Heterogeneity in Cloud Centers 161

6.2.4 Interaction among Sub-Models

The interactions among sub-models are depicted in Fig. 6.6. VM provisioning sub-

models (VMPSM) compute the steady-state success probabilities (Ph, Pw and Pc) that at

least a PM in one of the pools (hot, warm and cold, respectively) can accept the super-task.

These success probabilities are used as input parameters to the resource allocation sub-

model (RASM). The hot PM sub-model (VMPSM hot) computes Ph which is the input

parameter for both warm and cold sub-models. The warm PM sub-model (VMPSM warm)

computes Pw which is the input parameter for the cold sub-model (VMPSM cold). In

addition, the hot PM model provides Ph and the probability by which a hot PM becomes

idle (Pi) for pool management sub-model (PMSM). In return, PMSM computesNh,Nw and

Nc as input for hot, warm and cold PM sub-models respectively. The resource allocation

sub-model (RASM) computes the blocking probability, BPq, which is the input parameter

to VM provisioning sub-models as well as PMSM. Table 6.3 shows the sub-models and

their corresponding outputs.

Table 6.3: Sub-models and their outputs.

Sub-model Output(s)

RASM BPq, BPr

VMPSM hot Ph, Pi

VMPSM warm Pw

VMPSM cold Pc

PMSM Nh, Nw, Nc

As can be seen, there is an inter-dependency among sub-models. This cyclic depen-

dency is resolved via fixed-point iterative method [65] using a modified version of succes-

162 Chapter 6: Pool Management and Heterogeneity in Cloud Centers

sive substitution approach. For numerical experiments the successive substitution method

RASM

Ph

Ph
Pw

Pc

Ph

BPq

BPq

BPq

VMPSM_warm

VMPSM_hot

VMPSM_cold

PMSM
Nw

Nc

Nh

Pw

Pi

Ph
BPq

Figure 6.6: Interaction diagram among sub-models.

(Algorithm 2) is continued until the difference between the previous and current value of

blocking probability in the global queue (i.e., BPq) is less than 10−6. Usually the integrated

model converges to the solution in less than 8 iterations.

6.2.5 Scalability and flexibility of integrated model

A cloud center may scale up or down in terms of global queue size, number of PMs

in each pool and the degree of virtualization which are referred as design parameters. Ta-

ble 6.4 shows the relationship between the number of states in each sub-model and their

associated design parameters.

As can be seen from Table 6.4, the number of states in each sub-model has a linear

Chapter 6: Pool Management and Heterogeneity in Cloud Centers 163

Algorithm 2 Successive Substitution Method
Input: Initial success probabilities in pools: Ph0, Pw0, Pc0

Input: Initial idle probability of a hot PM: Pi0

Output: Blocking probability in Global Queue: BPq

counter← 0; max← 10; diff← 1

BPq0← RASM (Ph0, Pw0, Pc0)

[Nh, Nw, Nc]← PMM (Ph0, Pi0)

while diff ≥ 10−6 do

counter← counter + 1

[Ph, Pi]← VMPSM hot (BPq0, Nh)

Pw ← VMPSM warm (BPq0,Ph, Nw)

Pc← VMPSM cold (BPq0,Ph,Pw, Nc)

[Nh, Nw, Nc]← PMM (Ph, Pi)

BPq1← RASM (Ph, Pw, Pc)

diff ← |(BPq1 −BPq0) |

BPq0 ← BPq1

if counter = max then

break

end if

end while

if counter = max then

return -1

else

return BPq0

end if

164 Chapter 6: Pool Management and Heterogeneity in Cloud Centers

Table 6.4: Relationship between the size of sub-models and design parameters.

Sub-Model Design Parameters Number of States: f(i)

RASM Lq f(Lq) = 3Lq + 1

VMPSM

f(m) = 3, if m=1

m f(m) = 6, if m=2

f(m) = 2f(m− 1)− f(m− 2) + 1, if m>2

PMSM Nw, Nc, σ
f(Nw, Nc, σ) =

Nw +Nc + 1 + σ
∑σ

s=1(Nw +Nc − σ − s)

dependency on design parameters which guarantees the scalability of the integrated model.

Note that VMPSMs are identical for all PMs in the same pool. Therefore, we need only to

solve three VMPSMs (i.e., VMPSM hot, VMPSM warm and VMPSM cold) regardless of

how many PMs are in the cloud center.

6.3 Numerical validation

Under different configurations and parameter settings, we obtain two important perfor-

mance metrics, namely, rejection probability of super-tasks (STs) and total response delay.

We show the effects of changing arrival rate, task service time, number of PMs in each

pool, number of VMs in each PM and super-task size on the said performance indicators.

We also obtain the steady-state arrangement of pools (i.e., number of PMs in each pool)

under above-mentioned parameter setting as well as various pool checking rates.

Table 6.5 presents the range of individual parameter values. Also, in all subsequent

discussions and diagrams, the notation [h,w, c] will refer to a cloud center with h, w, and c

Chapter 6: Pool Management and Heterogeneity in Cloud Centers 165

PMs (i.e., servers) in the hot, warm, and cold pool, respectively.

Table 6.5: Range of parameters for numerical experiment.

Parameter Range Unit

Arrival rate 400 . . 1000 super-tasks/hour

Mean service time 40 . . 160 minute

No. of PMs in the hot pool 15 . . 30 N/A

No. of PMs in the warm pool 10 . . 20 N/A

No. of PMs in the cold pool 10 . . 15 N/A

No. of VMMs on each PM 2 N/A

No. of VMs on each PM 2 . . 10 N/A

Mean Look-up rate in the hot pool 625 searches/hour

Mean Look-up rate in the warm and cold pool 825 searches/hour

Required time for a warm PM to become hot 1 . . 5 minute

Required time for a cold PM to become hot 5 . . 10 minute

VM deployment time on a hot PM 1 . . 5 minute

First VM deployment delay on a warm PM 3 . . 10 minute

First VM deployment delay on a cold PM 8 . . 15 minute

Size of global queue 50 . . 100 super-tasks

Queue size at PMs 2 . . 10 tasks

Our first set of experiments investigates the effects of task service time on rejection

probability and total delay imposed by the cloud center on super-tasks before getting into

service. In the first experiment, the results of which are shown in Fig. 6.7, super-tasks

have one task each, while each PMs are permitted to run only two VMs; the super-task ar-

rival rate is constant at 1000 STs/hr. As can be seen from Fig. 6.7(a), increasing the mean

service time of individual tasks leads to an almost linear increase in rejection probability,

while the increase of the system capacity (i.e., the number of PMs in each pool) reduces

166 Chapter 6: Pool Management and Heterogeneity in Cloud Centers

(a) Super-task rejection probability. (b) Total delay on a super-task.

Figure 6.7: 2 VMMs on each PM, 1 VM on each VMM, arrival rate = 1000 STs/hour,
super-task-size = 1.

the rejection probability. The latter effect is more pronounced for tasks with longer service

time, in particular for those with service time over 80 minutes. At the same time, extending

system capacity has a negligible impact of rejection probability for tasks shorter than 60

min. These results allow us to identify a suitable arrangement for each service time, by ap-

plying a trade-off between the performance gain and the expenditure of required resources.

Regarding total delay, Fig. 6.7(b) shows that, for all pool arrangements, longer service

times will result in longer delays, since the actual service time has a direct effect on the

amount of waiting time of queued super-tasks. This effect is more noticeable for ’weaker’

configurations such as [15, 10, 10] (i.e., 15 PMs in the hot pool, and warm and cold pools

with 10 PMs each), as opposed to the ‘stronger’ ones such as [30, 20, 15] where the delay

increases is barely perceptible in the observed range of mean service times.

System performance when the mean service time is fixed at 100 minutes, but the super-

task arrival rate (which, in this case, is equal to the task arrival rate) is variable, is shown

Chapter 6: Pool Management and Heterogeneity in Cloud Centers 167

(a) Super-task rejection probability. (b) Total delay on a super-task.

Figure 6.8: 2 VMMs on each PM, 1 VM on each VMM, service time = 100 min, super-
task-size = 1.

in the diagrams in Fig. 6.8. Again, the rejection probability, shown in Fig. 6.8(a), exhibits

a sharp rise above a certain value of (super-)task arrival rate, which is mainly due to in-

sufficient size of the global (input) queue. However, the total delay, shown in Fig. 6.8(b),

exhibits a sharp increase at an even lower value of the (super-)task arrival rate; when the

rejection rate becomes non-negligible, the delay flattens because the actual number of tasks

serviced is decreasing. Thus a simple increase in the size of the global queue is ill advised,

as it would reduce the rejection probability at the expense of much higher delays. Conse-

quently, if a cloud provider observes unacceptable delay and/or task rejection performance,

a prudent course of action would be to increase the system capacity (i.e., the number of

PMs) first, and extend the global queue only if the observed total response time is well

below the prescribed limit.

Our second set of experiments focuses on the impact of super-task size on system per-

formance. We have conducted the calculations using both geometric and uniform distribu-

168 Chapter 6: Pool Management and Heterogeneity in Cloud Centers

Uniform

Distribuion
Geometric

Distribution
Pool Configuration

(a) Super-task rejection probability.

Uniform

Distribuion
Geometric

Distribution
Pool Configuration

(b) Total delay of a super-task.

Figure 6.9: 2 VMMs, 5 VMs on each VMM, service time = 100 min, arrival rate = 4500
tasks/hour.

tion for the number of tasks in a super-task. In the former case, we truncate the distribution

at the value of maximum super-task size (MSS) which corresponds to the maximum num-

ber of VMs running on a single PM, so the probability of having a super-task of size i

is

pi =

 (1− p)i−1p, if i < MSS

(1− p)MSS−1, if i = MSS
(6.17)

in which p is the parameter of geometric distribution. In the latter case (i.e., for uniform

distribution) the probability of having a super-task of size i is

pi =
1

MSS
(6.18)

Regarding the value of MSS, it is worth noting that our model does not impose any

restriction whatsoever on the degree of virtualization, but we still need a practical limit. We

are aware that a mainframe class computer can indeed run tens, or perhaps even a hundred

VMs that correspond to a standard PC machine. However, a recent survey has shown that

61% of the respondents run less than 10 VMs per PM, while a mere 5% run more than 25

Chapter 6: Pool Management and Heterogeneity in Cloud Centers 169

VMs on a PM [81]. Moreover, VMs running on multi-core CPUs are vulnerable to cache

interference, as a VM running on one core may degrade the performance of a VM running

on another core [85, 106]. Hence, we have assumed that each PM runs two VMMs, each

of which manages up to five VMs, for a total of up to 10 VMs per PM.

From the diagrams in Fig. 6.9(a), we can see that an increase in super-task size leads

to a reduction of rejection probability for both geometric and uniform distributions. As for

the total task delay, shown in Fig. 6.9(b), the curves show a relatively flat peak, and then

fall off rapidly. This is due to the fact that 4500 tasks/hour is the aggregate task arrival rate:

as the mean super-task size increases, the actual super-task arrival rate will decrease. In

case of geometric distribution (shown with lines), larger mean size means lower variability

of actual sizes, which makes the resulting rejection probability and total delay lower. In

fact, in the boundary case where the average super-task size is 10, all super-tasks have the

same size, and the super-task arrival rate is one-tenth of the aggregate rate. As the result,

each incoming super-task will obtain an entire PM which, together with the corresponding

reduction in super-task arrival rate, guarantees a shorter waiting time in the global queue

and virtual elimination of blocking at that queue. The processing delay becomes, then, the

dominant part of the total delay. We note that lower variability of super-task size has been

shown to increase the server utilization in multi-server systems as well [9, 82].

Similar behavior can be observed in the case of uniform distribution (shown with sym-

bols), although the rejection probability and total delay are somewhat higher than in the

case of geometric distribution. The rationale for this behavior is that super-tasks of all sizes

are equi-probable under uniform distribution, whereas larger size super-tasks (which are

more likely to get rejected under the total acceptance policy) have lower probability under

170 Chapter 6: Pool Management and Heterogeneity in Cloud Centers

(a) Super-tasks rejection probability. (b) Total delay on a super-task.

Figure 6.10: 2 VMs on each PM, 1 VM on each VMM, super-task-size = 1, arrival rate =
1000 STs/hour, service time = 100 min.

geometric distribution. Also, larger super-tasks release more capacity when finished, which

helps reduce the overall delay.

Our next experiment investigates the effects of pool checking rate on the performance

metrics. The pool checking rate is the rate by which PMM searches for idle hot PMs and

switches them to the warm or cold pool, respectively. Note that an idle hot PM would be

first switched to the warm pool, and later to the cold pool; however, if there are more than

σ PMs in the warm pool, it will be immediately moved to the cold pool (i.e., shut down).

In previous experiments the mean pool checking rate was fixed at 15 checks per hour.

For obvious reasons, higher pool checking rate will result in lower power consumption,

however a rate that is too high may bring about the ping-pong effect. Namely, a recently

shut-down PM may be needed soon so PMM has to turn it on again, and frequent back and

forth movement of PMs may lead to longer delays and higher rejection probability, not to

mention reduced hardware reliability.

Chapter 6: Pool Management and Heterogeneity in Cloud Centers 171

(a) arrival rate = 500 (per hour). (b) service time = 60 min.

Figure 6.11: Normalized power consumption: 2 VMMs on each PM, 1 VM on each VMM,
super-task-size = 1.

In our experiments we have calculated the performance metrics for a number of differ-

ent pool configurations. As can be seen from Fig. 6.10, ’stronger’ configurations easily

outperform the ’weaker’ ones. When power consumption, shown in Fig. 6.11, is also taken

into account, the results reveal that any given pool arrangement has a unique pool check

rate that results in optimum balance between power consumption, on one side, and avail-

ability and throughput, on the other side. From the results shown in Figs. 6.10 and 6.11, it

can be seen that for [15,10,10] arrangement the optimum pool check rate is 30/hour, while

for [18,12,11] the best rate is 20/hr. For other configurations, a pool check rate of 10/hour

can be considered as a good choice.

Using PMM, we also study the steady-state arrangement of pools in a cloud center. In

other words, we try to identify the most probable arrangement of PMs in the pools in a long

run. We examine the model for vast variety of parameter space and present the results for

3 distinct settings (Table 6.6) in the Table 6.7.

172 Chapter 6: Pool Management and Heterogeneity in Cloud Centers

Table 6.6: Three configuration settings for the experiment.

Setting
Design Parameters (A) (B) (C)

Mean arrival rate (hour) 500 600 450

Mean service time (min) 80 60 100

Mean pool check rate (hour) 60 30 50

Desired No. of warm PMs 10 15 20

No. of VM on each PM 2 2 10

No. of VMM on each PM 2 2 2

Mean super-task size 1 2 4

Global queue size 50 75 100

Table 6.7: Steady-state configuration of pools.

Initial Steady-State Configurations

Configuration Setting (A) Setting (B) Setting (C)

[15, 10, 10] [33, 2, 0] [34, 1, 0] [34, 1, 0]

[18, 12, 11] [38, 2, 1] [40, 0, 1] [39, 1, 1]

[21, 14, 12] [40, 6, 1] [45, 0, 2] [41,3,3]

[24, 16, 13] [41,5,7] [48, 5, 0] [39, 2, 12]

[27, 18, 14] [40, 2, 17] [51, 8, 0] [39, 10, 10]

[30, 20, 15] [38, 1, 26] [52,5,8] [39, 9, 17]

In Table 6.7, the first column indicates the initial configuration of pools by which we

start the experiment. Then under 3 different settings and for 6 pool configurations the

steady-state arrangements are identified (the arrangements that are in bold face). Under

such arrangement the rejection probability is zero and the cloud center imposes the min-

imum delay on its users’ requests. For instance, for setting (A) the best arrangement is

[41,5,7]. Such steady-state configuration suggests a cloud provider to arrange its server

pool accordingly in order for achieving the highest user satisfaction. However, if some

Chapter 6: Pool Management and Heterogeneity in Cloud Centers 173

amount of rejection or delay is tolerable, our experiment could suggest other configura-

tions that can balance cloud providers’ interests such as rejection probability, response

delay, power consumption, and etc.

We also quantify the effects of PMM on power consumption for different arrival rates

as well as service rates. The normalized power consumption can be calculated as

Pow([Nh, Nw, Nc]) =
Nh

Nt

+
Nw

Nt

∗ ψ (6.19)

in which Nt = Nh + Nw + Nc and ψ is the ratio of power consumption of a warm PM

to a hot PM (set to 60% according to [67, 24]). Therefore, when all PMs are busy the

normalized power consumption of the cloud center is 1. As can be seen in the Fig. 6.11,

in case of weaker configurations (i.e., [15,10,10] and [18,12,11]), PMM cannot achieve

significant power saving since all of PMs are in hot mode most of the time. However, in

case of larger configurations, PMM can achieve substantial power savings, even up to 50%,

by turning down the idle PMs while still maintaining an acceptable level of QoS.

6.4 Heterogeneous Resources and Requests

In [44, 48], we employed homogeneous integrated performance models to overcome

the complexity of cloud computing centers. In this Section however, we introduce hetero-

geneity to our performance model. More specifically, we permit PMs to be different among

pools and also VMs are to be different in terms of number of virtual CPUs (vCPU) [49].

Each pool includes specific type of PMs. PMs in pools are different in terms of virtual CPU

(vCPU), number of cores per CPU, RAM, disk and the degree of virtualization (i.e the max

number of running VMs on the PM).

174 Chapter 6: Pool Management and Heterogeneity in Cloud Centers

Instantiation of a VM from an image and provisioning it on hot PMs has the minimum

delay compared to warm and cold PMs. Warm PMs require some time to be ready for

provisioning and cold PMs require additional time to be started up before a VM instantia-

tion. Each VM needs one vCPU and each vCPU may run on multiple physical CUP cores

[97]. The size of super-task (i.e., number of VMs) and size of vCPU (i.e., number of cores

assigned to a vCPU) can be generally distributed. For numerical validation the super-task

size is assumed to be uniformly or geometrically distributed but we truncate the distribu-

tion of the value by MSS (Maximum Super-task Size). MSS is the maximum number of

VMs running on a single PM. A super-task is shown in Fig. 6.12. We also use uniform

distribution for the vCPU size in the numerical Section.

of vCPUs

per VM

of Cores

per vCPU

RAM

(Gig)

Disk

(Gig)
of VMs

Figure 6.12: Specification of a typical super-task submitted by users.

Due to high interaction among tasks within a super-task, each super-task will be provi-

sioned on the same PM. A super-task may request up to all available VMs or CPU cores on

a single PM. In this work, all VMs are the same in terms of RAM and disk while each VM

may request a different number of CPU cores.

Server Assigning Module (SAM) starts with the hot pool to provision the super-task on

a PM machine. If the process is not successful then SAM examines the warm pool. if there

is no PM in warm pool that can accommodate the super-task, SAM refers to the cold pool.

Finally, SAM either assigns a PM in one of the pools to a super-task or rejects the super-

task. As a result, user requests (super-tasks) may get rejected either due to lack of space in

Chapter 6: Pool Management and Heterogeneity in Cloud Centers 175

global queue or insufficient resource at the cloud center. When a running task finishes, the

capacity used by that VM is released and becomes available for servicing the next task.

We identify four main delays imposed by cloud computing centers on a user requests:

at first, it should be determined whether cloud center has sufficient resources to fulfill the

super-task. Using SAM, we capture the details of delays in the global queue as well as

decision process. Then, VM Provisioning Module (VMPM) undertakes the provisioning of

VMs. Therefore each task within super-task may experience queuing delay at PM’s queue

and VM provisioning process delay. After all, the actual service can start. Therefore, the

response time can be considered as the sum of four above mentioned delays and the actual

service time.

In order to model each module precisely, we design two stochastic sub-models for

SAM and VMPM. We then connect these sub-models into an overall performance model to

compute the task rejection probability and mean response delay. We describe our analysis

in the following sections. SAM is realized by server allocation sub-model (SASM) that is

identical with RASM in Chapter 5, Section 5.4.1, Fig. 5.2. Therefore, we only describe the

VMPM in the next Section.

6.4.1 VM Provisioning Sub-Model

Virtual Machine Provisioning Sub-Model (VMPSM) captures the instantiation, deploy-

ment and running of VMs on a PM. Fig. 6.13 shows the VMPSM (a 4-dimensional CTMC)

for a PM in the hot pool. For the sake of simplicity in representation, Fig. 6.13 just shows

the VMPSM when each super-tasks has only one task. A PM in warm or cold pool can be

modeled as a hot PM though, with some minor differences. Consequently, each pool can

176 Chapter 6: Pool Management and Heterogeneity in Cloud Centers

be modeled as a set of VMPSM with the same arrival and instantiation rate. Each state in

Fig. 6.13 is labeled by (i, j, k, l) in which i indicates the number of tasks in PM’s queue,

j denotes the number of task that is under provisioning, k indicates the number of busy

cores and l is the number of VM that are already deployed on the PM. Note that we set the

queue size at each PM equal to the maximum number of VMs that can be deployed on a

PM. Therefore, a super-task can be accepted by a PM if first, there is enough room in the

PM’s queue for all tasks within the super-task and second, if the PM has sufficient number

of free cores for the given super-task. Let φh be the rate at which a VM can be deployed on

a PM at hot pool and µ be the service rate of each VM. So, the total service rate for each

PM is the product of number of running VMs by µ. State (0, 0, 0, 0) indicates that the PM

is empty and there is no task either in the queue or in the instantiation unit. The arrival rate

to each PM in the hot pool is given by:

λh =
λst(1−BPq)

Nh

(6.20)

in which Nh is the number of PMs in the hot pool.

The state transition in VMPSM can occur due to super-task arrival, task instantiation

or service completion. From state (0, 0, 0, 0), system can move to state (0, 1, 0, 0) with

rate λh; at this state, because the instantiation unit is free the super-task will go under

provisioning immediately. From (0, 1, 0, 0), system may transit to (1, 1, 0, 0) upon ar-

rival of another super-task. From state (0, 1, 0, 0) system also may move to one of the

states {(0, 0, 1, 1), (0, 0, 2, 1), · · · , (0, 0,m, 1)} with the rate of piφh. Probability pi is

the probability by which a super-task may request i cores for a single VM. From states

{(0, 0, 1, 1), (0, 0, 2, 1), · · · , (0, 0,m, 1)} system can get back to (0, 0, 0, 0) with rate µ (i.e.,

service completion rate), or again upon arriving a super-task, system can move to one of

Chapter 6: Pool Management and Heterogeneity in Cloud Centers 177

0,0,0,0

0,0,1,1

L,1,0,00,1,0,0

p1φh

μ

0,0,m,1

pmφh

μ

1,1,0,0

λh

0,0,2,1

μ

μ

μ

0,1,1,1 0,1,2,1 0,1,m,1

p1φh p2φh

pmφh

0,0,2,2 0,0,3,2 0,0,m,2

p1φh p2φh

2μ

μ

μ

μμ

μ

...

p2φh

... ...

2μp2

2μp1

2μpm-1

...

2μp1

Pm-1φh

0,1,2,2 1,1,2,2 L,1,2,2...

0,0,4,30,0,3,3 0,0,m,3...

p1φh p2φh

3μ

3μp2 3μp1

Pm-2φh

λh
λh

λh

λh

λh

λh

λh

λh

0,1,3,3 0,1,4,3 0,1,m,3...3μ 3μp13μp2

λh λh

λhλh

λh λh

pm-2φh

...
p1φh

pm-4φh

...
p1φh

pmφh

...
p1φh

pm-3φh

...
p1φh

λh

Figure 6.13: Virtual machine provisioning sub-model for a PM in the hot pool.

the states {(0, 1, 1, 1), (0, 1, 2, 1), · · · , (0, 1,m, 1)} with rate λh. Now consider the state

(0, 0, 3, 2) indicates two VMs are running in which one of them employs one core and the

other one engages two cores. System can move to (0, 0, 2, 1) or (0, 0, 1, 1) with rate 2µp1

(i.e., completed VM releases one core) or 2µp2 (i.e., completed VM releases two cores)

respectively. Also, system may move to (0, 1, 3, 2) upon arrival of another super-task.

178 Chapter 6: Pool Management and Heterogeneity in Cloud Centers

Suppose that πh(i,j,k,l) is the steady-state probability for the hot PM model (Fig. 6.13)

to be in the state (i, j, k, l). Using steady-state probabilities, we can obtain the probability

that at least on PM in hot pool can accept the super-task for provisioning. At first we need

to compute the probability that a hot PM cannot admit a super-task for provisioning (P h
na).

Let m be the total number of cores on a PM and MCS ≤ m be the maximum number of

cores that can be requested by a super-task. Since each VM requires at least one vCPU

(i.e., one core), the maximum number of VMs on a single PM (MSS) is not going beyond

m. In Fig. 6.13, let Fh(i, j, k, l) = m − (i + j + l) and Gh(i, j, k, l) = m − k be the free

capacity and cores at each state respectively. P h
na is then given by:

P h
na =

∑
x∈ξ

MSS∑
t=Fh+1

πhxP
∗
t +

∑
y∈ζ

MCS∑
s=Gh+1

πhyps (6.21)

where P ∗t is the probability of arrival a super-task with size t and ξ is a set of states in which

the system might block an arrival super-task due to lack of space:

ξ={(i, j, k, l)| Fh(i, j, k, l) < MSS}

and ps is the probability by which a super-task may request for s cores and ζ is a set of

states in which the system might block an arrival super-task due to lack of free cores:

ζ={(i, j, k, l)| Gh(i, j, k, l) < MCS}

Therefore, probability of successful provisioning (Ph) in the hot pool can be obtained

as Ph = 1− (P h
na)

Nh . where Nh is the number of PMs in the hot pool. Note that Ph is used

as an input parameter in SASM. The provisioning model for warm PM is almost the same

with the one for hot PM, though, there are some differences in parameters:

(a) The arrival rate to each PM in warm pool is

λw =
λst(1−BPq)(1− Ph)

Nw

(6.22)

Chapter 6: Pool Management and Heterogeneity in Cloud Centers 179

(b) Every PM in warm pool requires extra time to be ready for first instantiation. This time

is assumed to be exponentially distributed with mean value of 1/γw.

(c) The first instantiation is occurred by rate φw and the rest by φh.

(d) The specifications of PMs in the warm pool are different from hot pool. (i.e., MSS,

MCS and m)

Like VMPSM for a hot PM (Fig. 6.13), the model for a warm PM is solved and the

steady-states probabilities (πw(i,j,k,l)), are obtained. The success probability for provisioning

a super-task in warm pool is Pw = 1 − (Pw
na)

Nw . A PM in the cold pool can be modeled

as in the warm pool but with different arrival rate, instantiation rate and start up time. The

effective arrival rate at each PM in the cold pool is given by:

λc =
λst(1−BPq)(1− Ph)(1− Pw)

Nc

(6.23)

A cold PM (off machine), requires longer time than a warm PM to be ready (hot) for the

first instantiation. We assume that the start up time is also exponentially distributed with

mean value of 1/γc. The success probability for provisioning a super-task in the cold pool

is Pc = 1 − (P c
na)

Nc . From VMPSM, we can also obtain the mean waiting time at PMs’

queue (PMwt) and mean provisioning time (PMpt) by using the same approach as the one

that led to Eq. (6.5). As a result, the total delay before starting of actual service time, is

given by:

td = wt+ lut+ PMwt + PMpt (6.24)

Note that all success probabilities (i.e., Ph, Pw and Pc) are input parameters to the server

allocation sub-model.

180 Chapter 6: Pool Management and Heterogeneity in Cloud Centers

6.4.2 Interaction among Sub-Models

The interactions among sub-models is depicted in Fig. 6.14. VM provisioning sub-

models (VMPSM) compute the steady state probabilities (Ph, Pw and Pc) that at least one

PM in a pool (hot, warm and cold, respectively) can accept a super-task for provision-

ing. These probabilities are used as input parameters to the server allocation sub-model

(SASM). Hot PM sub-model (VMPSMhot) computes Ph which is the input parameter for

both warm and cold sub-models; warm PM sub-model (VMPSMwarm) computes Pw which

is the input parameter for the cold sub-model. The server allocation sub-model (SASM)

computes the blocking probability, BPq, which is the input parameter to VM provisioning

sub-models. As can be seen, there is an inter-dependency among performance sub-models.

This cyclic dependency is resolved via fixed-point iterative method using a modified ver-

sion of successive substitution approach.

SASM

Ph Ph

Pw

Pc Pw

PhBPq

BPq BPq

VMPSMhot

VMPSMwarmVMPSMcold

Figure 6.14: Interaction among sub-models.

Chapter 6: Pool Management and Heterogeneity in Cloud Centers 181

6.5 Numerical validation: heterogeneous centers

The successive substitution method is continued until the difference between the previ-

ous and current value of blocking probability in global queue (i.e., BPq) is less than 10−6.

The integrated model converges to the solution in 8 iterations or less. Table 6.8 shows the

specifications of PMs in each pool that we use for the numerical validation.

Table 6.8: Specifications of PMs in each pool.

Parameters Hot Pool Warm Pool Cold Pool
of CPU cores 10 8 4

RAM (GB) 40 25 10

Disk (GB) 500 250 200

Max # of VMs 10 8 2

of cores per vCPU 1,2,3 or 4 1,2 or 4 2 or 4

We show the effects of changing arrival rate, task service time, number of PMs in

each pool, number of VMs on each PM and super-task size on the interested performance

indicators. Arrival rate ranges from 400 to 1000 STs per hour. Mean service time of each

task within STs ranges form 40 to 160 minutes. we assume 35 to 65 PMs in pools. The

look-up time for finding a proper PM is assumed to be independent of the number of PMs

in the pool and the type of pool (i.e., hot, warm and cold). Look-up rate is set to 625 and

825 searches per hour for warm and cold pools. Mean preparation delay for a warm and

cold PM to become a hot PM (i.e., be ready for first VM instantiation) are assumed to be 1

to 3 and 5 to 10 minutes, respectively. Mean time to deploy a VM on a hot PM is assumed

to be between 4 and 10 minutes. First VM instantiation on a warm and cold PM are to be

between 4 to 7 and 8 to 12 minutes, respectively. After first VM instantiation on a warm

or cold PM, it has already become a hot PM so that the next VM can be deployed just like

182 Chapter 6: Pool Management and Heterogeneity in Cloud Centers

a hot PM. The size of global queue is set to 100 super-tasks (ST) and the number of cores

per vCPU is assumed to be uniformly distributed.

(a) Rejection probability. (b) Total delay on a super-task.

Figure 6.15: arrival-rate=500 tasks/hour.

In the first experiment, the results of which is shown in Figs. 6.15(a) and 6.15(b),

STs have one task each, and PMs are permitted to run only one VM. Fig. 6.15(a) shows

(at a constant arrival rate of 500 STs/hr and different numbers of PMs in each pool) that

by increasing the mean service time the rejection probability increases almost linearly.

The configuration [21,14,12] seems to be a reasonable choice to maintain the rejection

probability below 15%. In addition, it can be observed that by increasing the capacity of

system (i.e., having more PMs in the pools) the maximum gain occurs at the longest service

time (i.e. 160 minutes). Fig 6.15(b) shows that a longer service time will result in longer

total delay on STs. Unlike the rejection probability, Fig. 6.15(a), there is no unique service

time that yield the maximum gain for all pool configurations.

Under different arrival rates, we also determine the two performance metrics while the

Chapter 6: Pool Management and Heterogeneity in Cloud Centers 183

(a) Rejection probability.

tr
an

si
en

t r
eg

im
e

saturation regime

st
a
b
le

 r
e
g
im

e

(b) Total delay on a super-task.

Figure 6.16: service-time=60 minute.

average service time is set to 60 min, Figs. 6.16(a) and 6.16(b). One turning point can be

noticed in rejection probability curves at which rejection probability increases suddenly.

Such points, e.g., Fig. 6.16(a), 500 STs/hour for configuration [27,18,14], may suggest

the appropriate time to upgrade or inject more resources (i.e., PMs). However, in case of

total delay, two turning points (three regimes of operation) can be identified, Fig. 6.16(b):

the first regime (i.e., stable regime) is the region in which the cloud providers would like to

operate. (Admission control may use provided information here and helps the cloud centers

to operate in such regime by not accepting extra requests) Transient regime is in between

two turning points which the total delay increases sharply. Cloud centers should avoid

entering such region since the violation of SLA is about to happen. As the transient regime

is not too narrow, it is possible for cloud center to return to stable zone after a short time

(i.e., the admission control has enough time to adjust the new admissions). The transient

regime is attributed to the size of global queue. The longer the global queue is, the wider the

184 Chapter 6: Pool Management and Heterogeneity in Cloud Centers

transient regime is going to be. In saturation regime, the total delay for some configurations

such as [15,10,10], [18,12,11] and [21,14,12] is even getting decreased at the expense of

high rejection rate of super-tasks. This area of operation is totally unpleasant for both cloud

providers and users since the cloud center is mostly unavailable for majority of the users.

Uniform

Distribuion
Geometric

Distribution
Pool Configuration

(a) Rejection probability.

Uniform

Distribuion
Geometric

Distribution
Pool Configuration

(b) Total delay on a super-task.

Figure 6.17: service-time=60 minute, aggregate arrival-rate=4500 tasks/hour.

In the last experiment, Figs. 6.17(a) and 6.17(b), we examine the effect of super-task

size on task rejection probability and total delay using of geometric (shown with lines) and

uniform (shown with symbols) distributions for super-task size. Each VM will be assigned

one vCPU and each vCPU may use multiple cores (details in Table 6.8). Number of cores

per vCPU is assumed to be uniformly distributed. A super-task may request up to all of

the available VMs and cores on a PM. Note that the aggregate arrival rate is set to 3500

tasks/hr, however the effective arrival rate of super-tasks is various for different super-task

size. For instance, if the average super-task size was five, then the effective arrival rate of

super-tasks would be 700 STs/hr. As can be seen by increasing the size of super-tasks the

rejection probability reduces sharply for both geometric and uniform distribution. Since

Chapter 6: Pool Management and Heterogeneity in Cloud Centers 185

the size of super-tasks is truncated to the maximum number of VMs allowed on each PM

(here, up to 8 VMs), the bigger super-task size will result in the lower number of arrivals as

well as lower deviation of super-task size. As can be seen, by increasing the capacity the

maximum delay occurrs when the mean size of STs is 6, and the maximum reduction of

delay is obtained when the mean size of STs is 8. For STs of size 6 or bigger, the dominant

imposed delays are the processing delays (i.e, resource assigning and VM provisioning

delays) as opposed to the queuing delays. Due to higher deviation, the uniform distribution

imposes more rejections and delay on super-tasks.

6.6 Summary of the Chapter

In this Chapter, we have developed an interacting analytical model that captures im-

portant aspects including resource assigning process, virtual machine deployment, pool

management and power consumption of nowadays cloud centers. The performance model

can assist cloud providers to predict the expected servicing delay, task rejection proba-

bility, steady-state arrangement of server pools and power consumption. We carried out

extensive numerical experiments to study the effects of various parameters such as arrival

rate of super-tasks, task service time, virtualization degree, super-task size and pool check

rate on the task rejection probability, response time and normalized power consumption.

The behavior of cloud center for given configurations has been characterized in order to

facilitate the capacity planning, SLA analysis, cloud economic analysis and trade offs by

cloud service providers. Using the proposed pool management model, the most appropriate

arrangement of server pools and the amount of required electricity power can be identified

in advance for anticipated arrival process and super-task characteristics.

186 Chapter 6: Pool Management and Heterogeneity in Cloud Centers

We have also presented a performance model suitable for cloud computing centers with

heterogeneous requests and resources using interacting stochastic models. More specifi-

cally, a user task may request different types of VMs; VMs can be varied in terms of CPU

cores per virtual CPU. Also, unlike previous performance models that have been presented

in chapters 2, 3, 4 and 5, our model in this Chapter can support heterogeneous PMs.

Chapter 7

Summary and Future Work

This chapter concludes the dissertation with a brief summary of contributions and some

promising directions for future research.

7.1 Contributions

The main contribution of this thesis is developing performance models for cloud com-

puting centers. We started off with a basic analytical model and then gradually extended the

scope of the model in order to capture most important aspects of nowadays cloud centers.

The course steps of the performance model development process are as follows:

We developed the analytical model based on queuing theory. First, we adoptedM/G/m

queuing system as the abstract model for performance evaluation due to the characteristics

of cloud computing centers: having Poisson arrival of task requests, generally distributed

service time and large number of servers. Since there wasn’t any solution to be accurate

and efficient enough in case of large m at first place and large value of coefficient variation

187

188 Chapter 7: Summary and Future Work

(more than one), We develop our own approach to characterize the queuing system and

thus the cloud center. Next We extended our model to incorporate the cloud centers which

have hyper-exponentially family (those distributions that have coefficient of variation more

than one) distribution of service time. Later on we added an assumptions of finite capacity

for cloud center, which made our model closer to a real cloud centers. So we incorpo-

rate necessary assumptions that are required for having a real performance model of cloud

centers:

(i) Poisson arrival process

(ii) Single task arrival

(iii) Generally distributed task service time

(iv) Hyper/Hypo exponentially distributed task service time)

(v) Scale (Large number of servers)

For the first time, we employed M [x]/G/m/m + r queuing system, which is our ab-

stract model, in order to deal with the performance evaluation of a cloud center under batch

arrival (super-tasks). We assumed generally distributed batch size, Markovian arrival pro-

cess, generally distributed service time, large number of servers and a finite capacity of

input buffer for task requests. More specifically, the performance model was based on a

two-stage approximation technique where the original non-Markovian process is first mod-

eled with an embedded semi-Markov process, which is then modeled by an approximate

embedded Markov process but only at the time instants of super-task arrivals; the number

of departures between two successive super-task arrivals is counted approximately. This

Chapter 7: Summary and Future Work 189

technique provides quite accurate computation of important performance indicators such

as the mean number of tasks in the system, queue length, mean response and waiting time,

blocking probability and the probability of immediate service. While the model is approx-

imate, its accuracy is more than sufficient under a wide range of input parameter values; in

particular, it allows accurate modeling of cloud centers with a large number of PMs.

We have extended our analytical model for performance evaluation of highly virtualized

cloud computing centers. Performance evaluation is particularly challenging in scenarios

where virtualization is used to provide a well defined set of computing resources to the users

and even more so when the degree of virtualization, i.e., the number of virtual machines

(VMs) running on a single physical machine (PM) is high. We permitted each PM to run

up to 200 VMs, just like state-of-the-art PMs, and considered the effects of virtualization

on PMs performance based on the real data.

Our experience with previous performance models revealed that a monolithic model

may suffer from intractability and poor scalability due to large number of parameters. The

model ought to cover vast parameter space while it is still tractable. As a result, we de-

veloped and evaluated tractable functional sub-models and their interaction model while

iteratively solve them. We constructed separate sub-models for different servicing steps

in a complex cloud center and the overall solution obtain by iteration over individual sub-

model solutions. We assumed that the cloud center consists of a number of PM that are

allocated to users in the order of task arrivals. More specifically, user requests may share a

PM using virtualization technique. Since many of the large cloud centers employ virtual-

ization to provide the required resources such as PMs, we consider PMs with a high degree

of virtualization.

190 Chapter 7: Summary and Future Work

We have extended our proposed interacting analytical model to capture important as-

pects including pool management, power consumption, resource assigning process and

virtual machine deployment of nowadays cloud centers. The performance model can assist

cloud providers to predict the expected servicing delay, task rejection probability, steady-

state arrangement of server pools and power consumption. We carried out extensive nu-

merical experiments to study the effects of various parameters such as arrival rate of super-

tasks, task service time, virtualization degree, super-task size and pool check rate on the

task rejection probability, response time and normalized power consumption. The behavior

of cloud center for given configurations has been characterized in order to facilitate the

capacity planning, SLA analysis, cloud economic analysis and trade offs by cloud service

providers. Using the proposed pool management model, the most appropriate arrangement

of server pools and the amount of required electricity power can be identified in advance

for anticipated arrival process and super-task characteristics.

Finally, we have also presented a performance model suitable for cloud computing cen-

ters with heterogeneous requests and resources using interacting stochastic models. More

specifically, a user task may request different types of VMs; VMs can be varied in terms

of CPU cores per virtual CPU. Also, unlike previous performance models that have been

presented in chapters 2, 3, 4 and 5, our final performance model (last part of 6) can support

heterogeneous PMs.

7.2 Future Work

As we just discussed in the section 7.1, the obtained results gave us enough motivation

to consider following as future research topics to be investigated as a continuation of this

Chapter 7: Summary and Future Work 191

Ph.D. thesis.

We plan to extend the heterogeneity of our performance model to other parts of IaaS

cloud computing centers. We would like to support full heterogeneity in VMs, PMs and

user tasks; more specifically, VMs are required to be varied in terms of memory, disk,

CPU core and vCPU; PMs may differ in computation capacity, networking, memory, disk,

Graphics Processing Unit (GPU) and hypervisor (VMM) capabilities; user tasks may re-

quest various number of resources for different amount of time (i.e., different probability

distributions for task service time).

Assuming heterogeneous environment brings another challenge which is known as de-

cision making of task assignment policy. Although this issue has been extensively stud-

ied in the area of cluster and grid computing, proposed techniques are not quite applica-

ble/useful to cloud computing paradigm due to different nature of cloud architecture and

user requests. One direction of future research can be proposing an efficient task assign-

ment strategy whereby the utilization of cloud resources as well as the performance indica-

tors (e.g., waiting time, response time, blocking probability and probability of immediate

service) are improved simultaneously.

Bibliography

[1] S. Alam, R. Barrett, M. Bast, M. R. Fahey, J. Kuehn, C. McCurdy, J. Rogers, P. Roth,

R. Sankaran, and J. S. Vetter. Early evaluation of IBM BlueGene. 2008 SC In-

ternational Conference for High Performance Computing Networking Storage and

Analysis, pages 1–12, May 2008.

[2] Amazon Elastic Compute Cloud. User Guide. Amazon Web Service LLC or its

affiliate, Aug. 2012.

[3] An amazon.com company. Amazon Elastic Compute Cloud, Amazon EC2. Website,

Last Access Oct. 2012. http://aws.amazon.com/ec2.

[4] T. M. Apostol. Mathematical analysis. Addison Wesley, 2nd edition, 1974.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,

D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud computing.

Commun. ACM, 53:50–58, Apr. 2010.

[6] A. Baig. UniCloud Virtualization Benchmark Report. white paper,

March 2010. http://www.oracle.com/us/technologies/linux/

intel-univa-virtualization-400164.pdf.

192

http://aws.amazon.com/ec2
http://www.oracle.com/us/technologies/linux/intel-univa-virtualization-400164.pdf
http://www.oracle.com/us/technologies/linux/intel-univa-virtualization-400164.pdf

Bibliography 193

[7] J. Baker, C. Bond, J. Corbett, J. J. Furman, A. Khorlin, J. Larsonand, J. M. Leon,

Y. Li, A. Lloyd, and V. Yushprakh. Megastore: Providing Scalable, Highly Avail-

able Storage for Interactive Services. In Conference on Innovative Data Systems

Research (CIDR), pages 223–234, Jan. 2011.

[8] F. Bonomi and A. Kumar. Adaptive optimal load balancing in a nonhomogeneous

multiserver system with a central job scheduler. IEEE Trans. on Comput., 39:1232–

1250, Oct. 1990.

[9] S. C. Borst. Optimal probabilistic allocation of customer types to servers. SIGMET-

RICS Perform. Eval. Rev., 23:116–125, May. 1995.

[10] O. J. Boxma, J. W. Cohen, and N. Huffel. Approximations of the mean waiting time

in an M/G/s queueing system. Operations Research, 27:1115–1127, 1979.

[11] R. Buyya, C. S. Yeo, and S. Venugopal. Market-oriented cloud computing: Vision,

hype, and reality for delivering it services as computing utilities. In IEEE Interna-

tional Conference on High Performance Computing and Communications, pages 5

–13, Sep. 2008.

[12] J. Cao, W. Zhang, and W. Tan. Dynamic control of data streaming and process-

ing in a virtualized environment. IEEE Transactions on Automation Science and

Engineering, 9(2):365–376, April 2012.

[13] A.L.E. Corral-Ruiz, F.A. Cruz-Perez, and G. Hernandez-Valdez. Teletraffic model

for the performance evaluation of cellular networks with hyper-erlang distributed

194 Bibliography

cell dwell time. In 71st IEEE Vehicular Technology Conference (VTC 2010-Spring),

pages 1–6, May. 2010.

[14] G. P. Cosmetatos. Some practical considerations on multi-server queues with multi-

ple poisson arrivals. Omega, 6(5):443–448, 1978.

[15] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The cost of doing

science on the cloud: The montage example. 2008 SC International Conference

for High Performance Computing Networking Storage and Analysis, C(Nov.):1–12,

2008.

[16] T. V. T. Duy, Y. Sato, and Y. Inoguchi. Performance evaluation of a green scheduling

algorithm for energy savings in cloud computing. In Parallel Distributed Process-

ing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International Symposium on,

pages 1–8, Apr. 2010.

[17] D. Efrosinin and V. Rykov. On performance characteristics for queueing systems

with heterogeneous servers. Automation and Remote Control, 69:61–75, 2008.

[18] A. Federgruen and L. Green. An M/G/c queue in which the number of servers

required is random. Journal of Applied Probability, 21(3):583–601, 1984.

[19] D. G. Feitelson. Workload Modeling for Computer Systems Performance Evaluation.

Online Book, June 2012. Version 0.36.

[20] S. Ferretti, V. Ghini, F. Panzieri, M. Pellegrini, and E. Turrini. QoS-aware clouds.

In 2010 IEEE 3rd International Conference on Cloud Computing (CLOUD), pages

321–328, Jul. 2010.

Bibliography 195

[21] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud computing and grid computing 360-

degree compared. In Grid Computing Environments Workshop, GCE ’08, pages

1–10, Nov. 2008.

[22] J. Fu, W. Hao, M. Tu, B. Ma, J. Baldwin, and F.B. Bastani. Virtual services in cloud

computing. In IEEE 2010 6th World Congress on Services, pages 467–472, 2010.

[23] B. Furht. Cloud Computing Fundamentals. In Handbook of Cloud Computing, pages

3–19. Springer US, 2010.

[24] A. Gandhi, V. Gupta, M. Harchol-Balter, and M. A. Kozuch. Optimality analysis

of energy-performance trade-off for server farm management. Performance Evalu-

ation, 67(11):1155–1171, 2010.

[25] D. F. Garcı́a, J. Garcı́a, J. Entrialgo, M. Garcı́a, P. Valledor, R. Garcı́a, and A. M.

Campos. A QoS control mechanism to provide service differentiation and overload

protection to internet scalable servers. IEEE Trans. Serv. Comput., 2:3–16, Jan.

2009.

[26] R. Ghosh, F. Longo, V. K. Naik, and K. S. Trivedi. Quantifying resiliency of IaaS

cloud. IEEE Symposium on Reliable Distributed Systems, 0:343–347, 2010.

[27] R. Ghosh, F. Longo, V. K. Naik, and K. S. Trivedi. Modeling and performance

analysis of large scale iaas clouds. Future Generation Computer Systems, 2012.

[28] R. Ghosh, K. S. Trivedi, V. K. Naik, and D. S. Kim. End-to-end performability

analysis for infrastructure-as-a-service cloud: An interacting stochastic models ap-

196 Bibliography

proach. In Proceedings of the 2010 IEEE 16th Pacific Rim International Symposium

on Dependable Computing, pages 125–132, 2010.

[29] GOGRID. GoGrid Cloud. Website, Last Access July 2012. http://www.

gogrid.com.

[30] G. Grimmett and D. Stirzaker. Probability and Random Processes. Oxford Univer-

sity Press, 3rd edition, Jul 2010.

[31] E. Hand. Head in the clouds. Nature, 449(7165):963–963, Oct 2007.

[32] L. He, S. A. Jarvis, D. P. Spooner, H. Jiang, D. N. Dillenberger, and G. R. Nudd. Al-

locating non-real-time and soft real-time jobs in multiclusters. IEEE Trans. Parallel

Distrib. Syst., 17:99–112, Feb. 2006.

[33] Hewlett-Packard Development Company, Inc. An overview of the VM-

mark benchmark on HP Proliant servers and server blades. white pa-

per, May 2012. ftp://ftp.compaq.com/pub/products/servers/

benchmarks/VMmark_Overview.pdf.

[34] D. P. Heyman and M. J Sobel. Stochastic Models in Operations Research, volume 1.

Dover, 2004.

[35] P. Hokstad. Approximations for theM/G/m queues. Operations Research, 26:510–

523, 1978.

[36] IBM. IBM Cloud Computing. Website, Last Access July 2012. http://www.

ibm.com/ibm/cloud/.

http://www.gogrid.com
http://www.gogrid.com
ftp://ftp.compaq.com/pub/products/servers/benchmarks/VMmark_Overview.pdf
ftp://ftp.compaq.com/pub/products/servers/benchmarks/VMmark_Overview.pdf
http://www.ibm.com/ibm/cloud/
http://www.ibm.com/ibm/cloud/

Bibliography 197

[37] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema. Per-

formance Analysis of Cloud Computing Services for Many-Tasks Scientific Com-

puting. IEEE Transactions on Parallel and Distributed Systems, 22(6):931–945, Jun.

2011.

[38] D. N. Joanes and C. A. Gill. Comparing measures of sample skewness and kurtosis.

Journal of the Royal Statistical Society: Series D (The Statistician), 47(1):183–189,

1998.

[39] H. Kameda, J. Li, C. Kim, and Y. Zhang. Optimal load balancing in distributed

computer systems. Springer, 1997.

[40] H. Khazaei, J. Mišić, and V. B. Mišić. Performance analysis of cloud computing

centers. In 7th International ICST Conference on Heterogeneous Networking for

Quality, Reliability, Security and Robustness (QShine), Nov. 2010.

[41] H. Khazaei, J. Mišić, and V. B. Mišić. Modeling of cloud computing centers using

M/G/m queues. In The First International Workshop on Data Center Performance,

Mar. 2011.

[42] H. Khazaei, J. Mišić, and V. B. Mišić. On the performance and dimensioning of

cloud computing centers. In Lizhe Wang, Rajiv Ranja, Jinjun Chen, and Boualem

Benatallah, editors, Cloud computing: methodology, system, and applications, chap-

ter 8, pages 151–165. FL: CRC Press, 2011.

[43] H. Khazaei, J. Mišić, and V. B. Mišić. Performance analysis of cloud centers under

198 Bibliography

burst arrivals and total rejection policy. In Global Telecommunications Conference

(GLOBECOM 2011), 2011 IEEE, pages 1–6, Dec. 2011.

[44] H. Khazaei, J. Mišić, and V. B. Mišić;. A fine-grained performance model of

cloud computing centers. IEEE Transactions on Parallel and Distributed Systems,

99(PrePrints):1, 2012.

[45] H. Khazaei, J. Mišić, and V. B. Mišić. Performance analysis of cloud computing

centers using M/G/m/m + r queueing systems. IEEE Transactions on Parallel

and Distributed Systems, 23(5):1, 2012.

[46] H. Khazaei, J. Mišić, and V. B. Mišić. Performance evaluation of cloud data centers

with batch task arrivals. In Hussein T. Mouftah and Burak Kantarci, editors, Commu-

nication Infrastructures for Cloud Computing: Design and Applications, chapter X,

pages X–Y. IGI Global, Dec. 2012.

[47] H. Khazaei, J. Mišić, and V. B. Mišić. Performance of cloud centers with high

degree of virtualization under batch task arrivals. IEEE Transactions on Parallel

and Distributed Systems, 2012.

[48] H. Khazaei, J. Mišić, V. B. Mišić, and N. Beigi-Mohammadi. Availability analysis of

cloud computing centers. In Globecom 2012 - Communications Software, Services

and Multimedia Symposium (GC12 CSSM), Dec. 2012.

[49] H. Khazaei, J. Mišić, V. B. Mišić, and N. Beigi-Mohammadi. Modeling the per-

formance of heterogeneous IaaS cloud centers. In Submitted to IEEE ICC 2013 -

Bibliography 199

Communication QoS, Reliability and Modeling Symposium (ICC’13 CQRM), Jun.

2013.

[50] H. Khazaei, J. Mišić, Vojislav B. Mišić, and S. Rashwand. Analysis of a pool man-

agement scheme for cloud computing centers. IEEE Transactions on Parallel and

Distributed Systems, 99(PrePrints), 2012.

[51] S. Kieffer, W. Spencer, A. Schmidt, and S. Lyszyk. Planning a Data Center. white pa-

per, February 2003. http://www.nsai.net/White_Paper-Planning_

A_Data_Center.pdf.

[52] D. S. Kim, F. Machida, and K. S. Trivedi. Availability modeling and analysis of a

virtualized system. In Proceedings of the 2009 15th IEEE Pacific Rim International

Symposium on Dependable Computing, PRDC ’09, pages 365–371, 2009.

[53] T. Kimura. Diffusion approximation for an M/G/m queue. Operations Research,

31:304–321, 1983.

[54] T. Kimura. Optimal buffer design of an M/G/s queue with finite capacity. Commu-

nications in Statistics and Stochastic Models, 12(6):165–180, 1996.

[55] T. Kimura. A transform-free approximation for the finite capacity M/G/s queue.

Operations Research, 44(6):984–988, 1996.

[56] T. Kimura and T. Ohsone. A diffusion approximation for an M/G/m queue with

group arrivals. Management Science, 30(3):381–388, 1984.

[57] L. Kleinrock. Queueing Systems, Volume 1, Theory. Wiley-Interscience, 1975.

http://www.nsai.net/White_Paper-Planning_A_Data_Center.pdf
http://www.nsai.net/White_Paper-Planning_A_Data_Center.pdf

200 Bibliography

[58] L. Kleinrock. A vision for the internet. ST Journal of Research, 2:4–5, Nov. 2005.

[59] K. Li. Optimizing average job response time via decentralized probabilistic job

dispatching in heterogeneous multiple computer systems. The Computer Journal,

41(4):223–230, 1998.

[60] K. Li. Minimizing the probability of load imbalance in heterogeneous distributed

computer systems. Mathematical and Computer Modelling, 36(9-10):1075 – 1084,

2002.

[61] K. Li. Optimal load distribution in nondedicated heterogeneous cluster and grid

computing environments. J. Syst. Archit., 54:111–123, Jan. 2008.

[62] K. Li. Optimal load distribution for multiple heterogeneous blade servers in a cloud

computing environment. Parallel and Distributed Processing Workshops and PhD

Forum, 2011 IEEE International Symposium on, 0:948–957, 2011.

[63] F. Longo, R. Ghosh, V. K. Naik, and K. S. Trivedi. A scalable availability model for

infrastructure-as-a-service cloud. Dependable Systems and Networks, International

Conference on, pages 335–346, 2011.

[64] B. N. W. Ma and J. W. Mark. Approximation of the mean queue length of anM/G/c

queueing system. Operations Research, 43:158–165, 1998.

[65] V. Mainkar and K. S. Trivedi. Sufficient conditions for existence of a fixed point in

stochastic reward net-based iterative models. Software Engineering, IEEE Transac-

tions on, 22(9):640–653, Sep. 1996.

Bibliography 201

[66] Maplesoft, Inc. Maple 15. Website, Last Access Mar. 2011. http://www.

maplesoft.com.

[67] D. Meisner, B. T. Gold, and T. F. Wenisch. Powernap: eliminating server idle power.

SIGPLAN Not., 44(3):205–216, Mar. 2009.

[68] M. Miyazawa. Approximation of the queue-length distribution of anM/GI/s queue

by the basic equations. Journal of Applied Probability, 23:443–458, 1986.

[69] H. J. Moon, Y. Chi, and H. Hacigümüs. SLA-aware profit optimization in cloud

services via resource scheduling. In Proceedings of the 2010 6th World Congress on

Services, SERVICES ’10, pages 152–153, 2010.

[70] NephoScale. The NephoScale Cloud Servers. Website, Last Access July 2012.

http://www.nephoscale.com/nephoscale-cloud-servers.

[71] S. A. Nozaki and S. M. Ross. Approximations in finite-capacity multi-server queues

with poisson arrivals. Journal of Applied Probability, 15:826–834, 1978.

[72] E. Page. Tables of waiting times for M/M/n, M/D/n and D/M/n and their use

to give approximate waiting times in more general queues. J. Operational Research

Society, 33:453–473, 1982.

[73] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel. Amazon S3 for sci-

ence grids: a viable solution? Proceedings of the 2008 international workshop on

Dataaware distributed computing DADC 08, pages 55–64, 2008.

[74] A. Patrizio. IDC sees cloud market maturing quickly. Datamation, Mar. 2011.

http://www.maplesoft.com
http://www.maplesoft.com
http://www.nephoscale.com/nephoscale-cloud-servers

202 Bibliography

[75] Rackspace. The Rackspace Cloud. Website, Last Access July 2012. http://

www.rackspace.com/cloud/.

[76] C. G. Rommel. The probability of load balancing success in a homogeneous net-

work. IEEE Trans. Softw. Eng., 17:922–933, Sep. 1991.

[77] A.L. Rosenberg and R.C. Chiang. Toward understanding heterogeneity in comput-

ing. In Parallel Distributed Processing (IPDPS), 2010 IEEE International Sympo-

sium on, pages 1–10, Apr. 2010.

[78] K. W. Ross and D. D. Yao. Optimal load balancing and scheduling in a distributed

computer system. J. ACM, 38:676–689, Jul. 1991.

[79] RSoft Design. Artifex v.4.4.2. RSoft Design Group, Inc., 2003.

[80] S. Saini, D. Talcott, D. Jespersen, J. Djomehri, H. Jin, and R. Biswas. Scientific

application-based performance comparison of sgi altix 4700, ibm power5+, and sgi

ice 8200 supercomputers. 2008 SC International Conference for High Performance

Computing Networking Storage and Analysis, pages 1–12, Dec. 2008.

[81] SearchDataCenter.com. The data center purchasing intentions survey report. Special

Report, 2008. http://searchdatacenter.techtarget.com.

[82] J. Sethuraman and M. S. Squillante. Optimal stochastic scheduling in multiclass

parallel queues. SIGMETRICS Perform. Eval. Rev., 27:93–102, May. 1999.

[83] B. A. Shirazi, K. M. Kavi, and A. R. Hurson, editors. Scheduling and Load Bal-

ancing in Parallel and Distributed Systems. Wiley-IEEE Computer Society Press,

1995.

http://www.rackspace.com/cloud/
http://www.rackspace.com/cloud/
http://searchdatacenter.techtarget.com

Bibliography 203

[84] J. M. Smith. M/G/c/K blocking probability models and system performance. Per-

form. Eval., 52:237–267, May. 2003.

[85] G. Somani and S. Chaudhary. Application performance isolation in virtualization.

In IEEE International Conference on Cloud Computing, CLOUD ’09., pages 41–48,

Sep. 2009.

[86] H. Takagi. Queueing Analysis, volume 1: Vacation and Priority Systems. North-

Holland, 1991.

[87] H. Takagi. Queueing Analysis, volume 2: Finite Systems. North-Holland, 1993.

[88] Y. Takahashi. An approximation formula for the mean waiting time of an M/G/c

queue. J. Operational Research Society, 20:150–163, 1977.

[89] X. Tang and S. T. Chanson. Optimizing static job scheduling in a network of het-

erogeneous computers. In Proceedings of the Proceedings of the 2000 International

Conference on Parallel Processing, ICPP ’00, pages 373–, 2000.

[90] A. N. Tantawi and D. Towsley. Optimal static load balancing in distributed computer

systems. J. ACM, 32:445–465, Apr. 1985.

[91] T. Thein and J. S. Park. Availability analysis of application servers using software

rejuvenation and virtualization. J. Comput. Sci. Technol., 24:339–346, Mar. 2009.

[92] H. C. Tijms. Heuristics for finite-buffer queues. Probability in the Engineering and

Informational Sciences, 6:277–285, 1992.

204 Bibliography

[93] H. C. Tijms, M. H. V. Hoorn, and A. Federgru. Approximations for the steady-state

probabilities in the M/G/c queue. Advances in Applied Probability, 13:186–206,

1981.

[94] K. S. Trivedi. Probability and Statistics with Reliability, Queuing and Computer

Science Applications. Wiley, second edition, 2001.

[95] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. A break in the

clouds: towards a cloud definition. ACM SIGCOMM Computer Communication

Review, 39(1), 2009.

[96] VMware, Inc. VMmark: A Scalable Benchmark for Virtualized Systems. Technical

Report, Sept. 2006. http://www.vmware.com/pdf/vmmark_intro.pdf.

[97] VMware, Inc. VMware VMmark 2.0 benchmark results. Website, Last Access Sept.

2012. http://www.vmware.com/a/vmmark/.

[98] J. Voas and J. Zhang. Cloud computing: New wine or just a new bottle? IT Profes-

sional, 11(2):15–17, Mar.-Apr. 2009.

[99] E. Walker. Benchmarking Amazon EC2 for high-performance scientific computing.

LOGIN, 33(5):18–23, 2008.

[100] L. Wang, G. von Laszewski, A. Younge, X. He, M. Kunze, J. Tao, and C. Fu. Cloud

computing: a perspective study. New Generation Computing, 28:137–146, 2010.

[101] L. Wang, J. Zhan, W. Shi, Y. Liang, and L. Yuan. In cloud, do mtc or htc service

providers benefit from the economies of scale? Proceedings of the 2nd Workshop on

ManyTask Computing on Grids and Supercomputers MTAGS 09, 2:1–10, 2010.

http://www.vmware.com/pdf/vmmark_intro.pdf
http://www.vmware.com/a/vmmark/

Bibliography 205

[102] K. Xiong and H. Perros. Service performance and analysis in cloud computing. In

IEEE 2009 World Conference on Services, pages 693–700, 2009.

[103] B. Yang, F. Tan, Y. Dai, and S. Guo. Performance evaluation of cloud service con-

sidering fault recovery. In First Int’l Conference on Cloud Computing (CloudCom)

2009, pages 571–576, Dec. 2009.

[104] D. D. Yao. Refining the diffusion approximation for theM/G/m queue. Operations

Research, 33:1266–1277, 1985.

[105] D. D. Yao. Some results for the queues Mx/M/c and GIx/G/c. Operations Re-

search Letters, 4(2):79–83, 1985.

[106] K. Ye, X. Jiang, D. Ye, and D. Huang. Two optimization mechanisms to improve the

isolation property of server consolidation in virtualized multi-core server. In 12th

IEEE International Conference on High Performance Computing and Communica-

tions (HPCC), pages 281–288, Sep. 2010.

[107] S. Yeo and H. Lee. Using mathematical modeling in provisioning a heterogeneous

cloud computing environment. Computer, 44:55–62, 2011.

[108] N. Yigitbasi, A. Iosup, D. Epema, and S. Ostermann. C-meter: A framework for

performance analysis of computing clouds. In CCGRID09: Proceedings of the 2009

9th IEEE/ACM International Symposium on Cluster Computing and the Grid, pages

472–477, 2009.

[109] L. Youseff, R. Wolski, B. Gorda, and R. Krintz. Paravirtualization for hpc systems.

206 Bibliography

In In Proc. Workshop on Xen in High-Performance Cluster and Grid Computing,

pages 474–486. Springer, 2006.

[110] L. M. Zhang, K. Li, and Y. Zhang. Green task scheduling algorithms with speeds

optimization on heterogeneous cloud servers. In Proceedings of the 2010 IEEE/ACM

Int’l Conference on Green Computing and Communications & Int’l Conference on

Cyber, Physical and Social Computing, GREENCOM-CPSCOM’10, pages 76–80,

2010.

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Dedication
	Introduction
	Cloud Computing
	Quality of Service
	Performance Analysis of Cloud Computing Centers
	Performance Modeling: a Review
	Performance Modeling Based on Queuing Theory
	Heterogeneity in Cloud Computing
	Cloud-Specific Task Assignment Policy
	Organization of the Thesis

	Performance Modeling: Single Task Arrivals
	Introduction
	Single Task Arrivals and Infinite Buffer Capacity
	Approximate Analytical Model
	Approximate Markov Chain
	Departure Probabilities
	Transition Matrix
	Numerical Validation
	Hyper-exponential Distribution for Service Time
	Distribution of Waiting and Response Time
	Experimental Results

	Single Arrival and Finite Capacity
	Approximate Analytical Model
	Approximate Embedded Markov Chain
	Equilibrium Balance Equations
	Distribution of Number of Tasks in the System
	Distribution of Waiting and Response Time
	Probability of Immediate Service
	Blocking Probability and Buffer Size
	Numerical Validation
	Ergodicity: Basic Definitions, Lemmas and Theorems
	Proof of Ergodicity

	Simulation
	Summary of the Chapter

	Performance Modeling: Batch (super-task) Arrivals
	Related Work
	Approximate Analytical Model
	Approximation by Embedded Processes
	Departure Probabilities
	Transition Matrix
	Region 1
	Region 2
	Number of idle PMs
	Region 3
	Region 4

	Equilibrium Balance Equations
	Distribution of the Number of Tasks in the System
	Blocking Probability
	Probability of Immediate Service
	Distribution of Response and Waiting time in Queue

	Numerical Validation
	The Impact of Homogenization
	Summary of the Chapter

	Performance Modeling: Virtualized Environment
	Virtualized Physical Machines
	Analytical Model
	Numerical Validation
	Analytical Model Results
	Simulation Results

	The impact of homogenization
	Summary of the Chapter

	Interacting Fine-Grained Performance Model
	Introduction
	Related Work
	Analytical Model
	Integrated Stochastic Models
	Resource Allocation Sub-Model
	VM Provisioning Sub-Model
	Interaction among Sub-Models

	Numerical Validation - Pure Performance Model
	Failure and Repair Effects of Cloud Resources
	Availability Model
	Interaction among sub-models

	Numerical Validation - Availability Model
	Summary of the Chapter

	Pool Management and Heterogeneity in Cloud Centers
	Analytical Model
	Integrated Stochastic Models
	Resource Allocation Sub-Model
	VM Provisioning Sub-Model
	Pool Management Sub-Model
	Interaction among Sub-Models
	Scalability and flexibility of integrated model

	Numerical validation
	Heterogeneous Resources and Requests
	VM Provisioning Sub-Model
	Interaction among Sub-Models

	Numerical validation: heterogeneous centers
	Summary of the Chapter

	Summary and Future Work
	Contributions
	Future Work

