RESOURCE ALLOCATION AND TASK ADMISSION
CONTROL IN CLOUD SYSTEMS

by

Haleh Khojasteh
M.Sc. in Computer Science, Ryerson University, Toronto, Canadl1l
B.Sc. in Computer Engineering, Shahid Beheshti Universitlgrdie, Iran, 1997

A dissertation
presented to Ryerson University

in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy
in the Program of
Computer Science

Toronto, Ontario, Canada, 2015
(©Haleh Khojasteh 2015

Author’s Declaration
| hereby declare that | am the sole author of this dissertafitiis is a true copy of the
dissertation, including any required final revisions, asepted by my examiners.

| authorize Ryerson University to lend this dissertationttoeo institutions or individuals

for the purpose of scholarly research.

| further authorize Ryerson University to reproduce thiséitation by photocopying or
by other means, in total or in part, at the request of otheitin®ns or individuals for the

purpose of scholarly research.

| understand that my dissertation may be made electropiaadlilable to the public.

Abstract
RESOURCE ALLOCATION AND TASK ADMISSION CONTROL IN CLOUD SYSTEMS
(©OHaleh Khojasteh 2015
Doctor of Philosophy
Computer Science
Ryerson University

The focus of this thesis is solving the problem of resourlmeation in cloud datacenter
using an Infrastructure-as-a-Service (laaS) cloud matfelhave investigated the behavior
of laaS cloud datacenters through detailed analytical endlation models that model lin-
ear, transitional and saturated operation regimes. We diata@ned accurate performance
metrics such as task blocking probability, total delayja#tion and energy consumption.
Our results show that the offered load does not offer coraplbaracterization of datacen-
ter operation; therefore, in our evaluations, we have damed the impact of task arrival
rate and task service time separately.

To keep the cloud system in the linear operation regime, we peoposed several dy-
namic algorithms to control the admission of incoming tasks our first solution, task
admission is based on task blocking probability and preddfthresholds for task arrival
rate. The algorithms in our second solution are based ordidltask acceptance threshold
and filtering coefficient. Our results confirm that the pragbtask admission mechanisms
are capable of maintaining the stability of cloud systemaurgdwide range of input param-
eter values.

Finally, we have developed resource allocation solutiamngriobile clouds in which
offloading requests from a mobile device can lead to forkihgew tasks in on-demand

manner. To address this problem, we have proposed two fepabburce allocation mech-

\Y

Vi Abstract

anisms with different prioritization: one in which forkealsks are given full priority over
newly arrived ones, and another in which a threshold is &shked to control the priority.
Our results demonstrate that threshold-based prioritgreetpresents better system perfor-
mance than the full priority scheme. Our proposed solut@rcfouds with mobile users

can be also applied in other clouds which their users’ appbas fork new tasks.

Contents

Vil

Contents
2_Related Work 32
id Computing 32
ask Adm 8MS 35
2.3 Resource Allocation in Mobile Cloud Computing 37
2.4 _The Markov Models with Multiple Priority Classes 41

5 ChapterSummdry 42
nvestigating The Behavior of 1aa oud Datacenters 43
haracterizing Energy Consumption of laa ouds in Nourated Regian 44

3.1.1 AnalticalModeél 46

Resource AllOCation 48

Virtual Machine Provisionidg v voo e 49

ment 51

%od Lo 52

Eié D e e e e e e e 54

ask Blocking and Total Task Delay 55

Pool Management e 57

nergy Consumption . ..o L e e 58

Analyzing The Impact of Provisioning Overhead Time in@dentels . . 60

Contents

IX
[Task Admission Scheme Based on Current Utilization 08
422 Performance Evaluatlon 99
Performance Evaluation of Algorlthﬂ S . 100
Performance Evaluation of AIgonthﬁ! 6 104

B.2.1 TheOueuemg.MpdeLoLResmmAﬂmdtuon 126
he Queueing Model of Resou ocation with Full Priarity . 127

he Queueing Model of Resou ocation with Thresholdduh 130
Jal Machine Provisioning 133

he Queueing Model o

List of Figures

1.1 TheNIST Cloud Model[46]. i,
1.2 The general offloading schen@EO] 24

Jal machine provisioning in the hotpool.

e variable from 100to 70tpean.
OChpar and down . .

List of Figures Xi

‘ Accepted rate of incoming task nsta e, tvariable a | rate101
4.12 Threshold p03|t|on using Algorltkﬂ S 102
4.13 Blocking probability usin IgonthlﬁS 102
4.14 Utilization using Algorithmal5o 103
4.15 Filtering coefficient using Algorlthﬁ S 104
4.16 Total delay using Algorlthnﬁ S 104
4.17 Threshold position using Algoritrﬂ 6 . .. 105
4.18 Blocking probability usin Algorithlﬁ6 106
4.19 Utilization using Algorithnalé L. 106
4.20 Filtering coefficient using Algorlthﬁ 6 . . . 107
4.21 Total delay usmg Algorlthnﬁ 6 107
/]

ocking Probabili 'A onstant service time andable arrival rate 145

List of Tables

Xii

Acknowledgments

There are many people to whom | owe credit for this thesis.hi\it the support and
encouragement of these wonderful people it would not beilples® finish this work.

First and foremost, | express my deepest gratitude to myrsigoe, Dr. Jelena Miic
for accepting me as her PhD student and guiding me with paiand enthusiasm. | was
greatly inspired by her excitement, vision, and creativ@fie has been abundantly helpful
and has assisted me in numerous ways. Without her contigglost and thoughtful
mentoring, many of the ideas in this thesis would never haweecto fruition.

Next, | am profoundly indebted to Dr. Vojislav B. BIt for his generous contribution,
great ideas and invaluable advice.

| would also like to appreciate my thesis committee, Dr. ¢s&fungang, Dr. Cherie
Ding and Dr. Lian Zhao from Ryerson University and Dr. Ben Lidrgm University of
Toronto for taking the time and making the effort to reviewsttnesis and provide me with
their insightful comments.

| am very grateful to my parents for their endless love angetip

Finally, |1 dedicate this thesis to my husband, Ali Tabatalaael my son, Hirad who
supported me unconditionally and have been the source afation and inspiration for

me and made my time more enjoyable during these years.

Xiii

To my beloved husband and son for their support and encoorage

XV

Chapter 1

Introduction

1.1 Cloud Computing at a Glance

Cloud computing has become a tremendous paradigm for hcastidglelivering ser-
vices over the Internet. The goal of this computing moded imake a better use of various
computer resources, keep together in order to achieve hitgheughput and to resolve
problems requiring high performance computations. Itvedlaisers to develop and lever-
age available computer resources in pay-as-you go manner.

In this thesis, we adopt the definition of cloud computingvypted by The National
Institute of Standards and Technology (NISB [46] as it cevthie essential aspects of
cloud computing:

NIST definition of cloud computing: Cloud computing is a model for enabling ubiqg-
uitous, convenient, on-demand network access to a shard@poonfigurable computing
resources (e.g., networks, servers, storage, applicatiang services) that can be rapidly

provisioned and released with minimal management efforeorise provider interaction.

2 Chapter 1: Introduction

Essential Resource Pooling ‘
Characteristics Broad Network Rapid Measured On-Demand
Access Elasticity Services Self Service

Deployment
Models Public Private Hybrid Community

Application

Layer

Layered

Model Hardware
Layer

Infrastructure
Layer

Figure 1.1: The NIST Cloud Model [46].

This cloud model is composed of five essential charactesistinree service models, and

four deployment models.

Fig. [1.1 illustrates the cloud’s essential charactesstgervice models, deployment

models and the layers defined by NIST![46].

1.1.1 Essential Characteristics of Cloud

Five essential characteristics of cloud computing is tyeanticulated in these defini-

tions [46]:

a) On-demand self-service:a user can provision cloud resources, such as server time

and network storage, automatically without requiring hanrgeraction with each

service provider.

b) Broad network access:cloud resources are available over the internet and aatesse

Chapter 1: Introduction 3

through diverse terminals such as thin or thick client platfs (e.g., computers, mo-

bile phones, tablets etc.).

c) Resource pooling:the computing resources are pooled together to serve neultip
consumers in a multi-tenant manner. These physical andaviresources are as-
signed based on the users’ requirements. User generaliyohamtrol or knowledge
over the exact location of the provided computer resoultmgss/he may be able to
specify location at a country, state or datacenter levelsier resources provided

to users include storage, processing, memory, and netveoritviadth.

d) Rapid elasticity: computer resources provisioned to customers can be elistic
provisioned and released and can be scaled rapidly outwatdnavard appropri-
ately with demand. User generally is able to scale out ressuthat appear to be

“unlimited” and can be provisioned in any quantity at anygim

e) Measured service: computer resources can be automatically controlled anid opt
mized using a metering capability appropriate to the typseofice provisioned (e.g.,
storage, processing, bandwidth, and active user accolRéspurce utilization can
be monitored, controlled, and reported for both the praveled user to provide

transparency.

1.1.2 The Service Models of Cloud

Following cloud service models have been used to class#ysénvices in cloud com-

munity |46]:

[) Software as a Service (SaaSgloud user release their applications on a hosting en-

Chapter 1: Introduction

vironment, which can be accessed through internet fronrsivieerminals (e.g. web
browser, PDA, etc.). Cloud users do not have control over thistenant cloud
infrastructure. Cloud users’ applications are managed imglesvirtual environ-
ment on the SaasS to leverage optimized amount of resourdesms of availabil-
ity, speed, security, maintenance and disaster recovermme®xamples of SaaS are
SalesForce.com, Google Mail, Google Docs, Workday, Cor@itnix GoToMeeting

and Cisco WebEx.

II) Platform as a Service (PaaS)PaaS is a development platform supporting the full
“Software Lifecycle” which allows cloud users to developuwtl services and appli-
cations (e.g. SaaS) directly on the PaaS cloud. Hence tfezatite between SaaS
and PaasS is that SaaS only hosts completed cloud applisatioereas PaasS offers a
development platform that hosts both completed and infessgcloud applications.
This requires PaasS, in addition to supporting applicatmsting environment, to pos-
sess development infrastructure including programmingrenment, tools, config-
uration management, and so forth. Some examples of PaaSageGAppENgine,

Force.com and Apache Stratos.

[I) Infrastructure as a Service (laaS):cloud users directly use IT infrastructures (pro-
cessing, storage, networks, and other fundamental contputisources) provided
in the laaS cloud. Virtualization is extensively used inSadoud in order to inte-
grate/decompose physical resources in an ad-hoc manneetogrowing or shrink-
ing resource demand from cloud users. The basic strategytoahzation is to set
up independent Virtual Machines (VMs) that are isolateanfiaoth the underlying

hardware and other VMs. Notice that this strategy is difiefeom the multi-tenancy

Chapter 1: Introduction 5

model, which aims to transform the application softwardgecture so that multiple
instances (from multiple cloud users) can run on a singldiempn (i.e. the same
logic machine). Some examples of laaS are Amazon EC2, Mittrdzare, Google

Compute Engine (GCE), Rackspace and Joyent.

1.1.3 The Deployment Models of Cloud

Four cloud deployment models have been defined in cloud ccrrilyr{@], B], H]:

a) Public cloud: a cloud that can be used by general public. The cloud may e les

b)

d)

secure due to its openness. Public cloud are the dominamt ddrcurrent cloud
computing deployment models and they require significarestment and are usu-
ally owned by large corporations such as Microsoft (Azu@xpgle (AppEngine) or

Amazon (EC2, S3).

Private cloud: a cloud that is exclusively used by one organization, comman
one of its customers. The cloud may be operated by itself bird party. Private
cloud offers increased security at greater cost. The St.réwsl Cloud Computing
Co-laboratory and Concur Technologies (Lemos, 2009) arstifition associations

that have a private cloud.

Community cloud: a cloud that is shared by two or more several organizations or
companies and is usually set up for their specific requirésdrhis cloud is typically

used for a shared concern (e.g. such as schools within arsityje

Hybrid cloud: the cloud infrastructure is a combination of two or more de(pri-

vate, community, or public). In this model, the clouds remas unique entities

Chapter 1: Introduction

but are bound together by standardized or proprietary tdohg that enables data
and application portability (e.g., cloud bursting for lelaalancing between clouds).
Organizations use the hybrid cloud model in order to optantieir resources to in-
crease their core competencies by offloading peripherahéss functions onto the

cloud while controlling core activities on-premise thrbygrivate cloud.

1.1.4 The Layered Models of Cloud

Cloud computing architecture is divided into four Iay@][%

[) The hardware layer refers to managing the physical resources of the cloud compu

Il)

1)

V)

ing infrastructure, including physical servers, routewsjtches, power and cooling
systems. This layer is implemented in datacenters and iosrttaousands of servers
which are arranged in racks and interconnected througlcisest routers or other

techniques.

The infrastructure layer (or the virtualization layer) manages a pool of storage
and computing resources by partitioning the physical nessuusing virtualization

techniques (such as Xen, KVM and VMware).

The platform layer includes operating systems and application frameworkse Th
aim of this layer is to minimize the burden of deploying apations directly into

virtual machine containers.

The application layer consists of the cloud applications which can be exploitet wi
the automatic-scaling feature to achieve better perfoomaavailability and lower

operating cost.

Chapter 1: Introduction 7

1.1.5 The Advantages of Cloud Computing

Cloud computing offers numerous advantages both to end asdrbusinesses of all

sizes. Some of the key advantages offered by cloud compatatisted ad [47]:

Lower-Cost Computers for Users

Improved Performance

Lower IT Infrastructure Costs

Reducing Business Risks and Maintenance Issues

Lower Software Costs

Instant Software Updates

Increased Computing Power

Unlimited Storage Capacity

Increased Data Safety

Improved Compatibility Between Operating Systems

Improved Document Format Compatibility

Easier Group Collaboration

Universal Access to Documents

Latest Version Availability

Removing the Tether to Specific Devices

8 Chapter 1: Introduction

1.2 Major Challenges in Cloud Computing

Cloud computing indeed provides several compelling feattinat make it attractive
to business owners. However, there are some open challunﬁals are not completely
i, [, E]:

addressed yet. The major challenges in this field are list

1.2.1 Resource Allocation Issues in Cloud

e Predictable and unpredictable workloads: The load of requests send to the cloud
may change drastically and increasingly as the demand dicappns grows. This
type of workload can be classified as unpredictable worklmadi it is difficult to

manage this type of workload.

e Homogenous and heterogeneous workloadsdiomogenous workloads primarily
are hosted on VMs which have similar type of configuratioa.,, itequired number
of CPUs, RAM, storage and mean time required to execute. Whéresogeneous
workloads are accommodated on VMs with different configaret The resource

allocation for both types of workloads can be challengingfe cloud system.

e Batch workloads and transactional workloads: The difference between batch and
transactional workloads is that batch workloads do not nessd intervention such
as the input from user. But transactional workloads needinsawvention. Example
of transactional workloads is online transactional systelfatch workloads are non-
preemptive whereas transactional workloads can be préempBatch workloads
can be unchanging, but transactional workloads fluctuatele@l with both types of

workloads, an efficient resource allocation algorithm ibécaddressed.

Chapter 1: Introduction 9

e Elasticity: Elasticity in cloud means how much it can dynamically hantbkefluc-
tuation in the requirements of the resources. The demanm@sources may grow in
time; the cloud must automatically detect the demand ani& $lca resources. An

efficient resource management in cloud should have a cléarsofor this issue.

e Minimization of costs and maximization of resource utilizaion: The two impor-
tant constraints to be met in cloud resource allocationlaentinimization of over-
all operation cost and maximization of resource utilizati@d robust cloud system
should provide services to its users with the intention tousth them with continuing
their services. In order to reach this goal, the serviceigemshould be able to give
services to the users with low cost. This can be done by hadeguate techniques
to monitor the resource usage and minimize the cost for taeswsd maximize the

system utilization.

e VM Migration: Virtual Machine migration is one of the methods which can tie u
lized by load balancer or used in energy preservation @sicio accommodate the
resources, VMs can be migrated between hosts. VM Migratiasidud computing
can be used to increase efficiency, balance load across theedéers and it enables
robust and highly responsive provisioning in datacentdosvever, the implementa-
tion of VM Migration can be challenging due to the additiooe¢rhead of deploying

and managing VMs.

e Handling high availability for long running tasks: The tasks on cloud can be run-
ning for a long time such as many hours or days. Therefors,riéquired to have

resources which are available for tasks without any inggion or failure. The tech-

10

Chapter 1: Introduction

niques are to be addressed to automatically detect anydaluunavailability and
shift the tasks to the available resources. Moreover, ttegmiques should handle

the situation in a short time and in a way that users do noteseresunavailability.

Parallel task scheduling: Computing tasks in parallel would increase the make span
of the task. The tasks can be independent or dependent. dndept tasks can
be executed in several virtual machines in parallel. Wherm@agendent tasks can

experience communication issues, so they must be schechdefiilly.

Networked Cloud: Cloud datacenters have resource allocation problem witieim t
intra domains. In case of distributed clouds, the resouwattesation algorithms suit-
able for local environments are not compatible with theritigted clouds. Some
of the research issues associated with distributed claud®mmunication delay,
optimal assignment of networked resources, virtualizatb networked resources,
etc. The problem of mapping virtualized network resoursegsgferred as Virtualized

Network Embedding (VNE) problem.

Contention among requests: Resource contention arises when two applications
want to access the same resource at the same time. In a @dicentrcloud en-
vironment, user requests may be stuck in contention whigecbéng for suitable

resources.

Scarcity of resources:this issue arises when there are limited resources.

Resource fragmentation:this situation arises when the resources are isolatedeTher

will be enough resources, but they are not available focation.

Chapter 1: Introduction 11

e Over-provisioning of resources:This case happens when the application gets more

resources than the demanded ones.

e Under-provisioning of resources:this issue occurs when the application is assigned

to less resources than it requires.

1.2.2 Cloud Security, Privacy and Reliability

Two of the key issues in cloud computing are security andagsivA company’s confi-
dential data must be unavailable and inaccessible by otmepanies. Companies offering
cloud computing services must satisfy security concernsstd@uers only pay to these
companies when they are convinced in security measures.

Privacy is another issue. As user’'s data can be accessedaingrocation, proper
authentication techniques should be developed. Usingeaétion, each user can access
only the data and applications relevant to his or her job. iRafpbn time and costs is
important for data resiliency.

Reliability is another concern which should be consideredl@ud system. Server’s

stability should be provided to avoid outrage in cloud sesve

1.2.3 Server Consolidation

Server consolidation is an approach to maximize resouilization while minimizing
energy consumption in a cloud computing environment. Sonueiutilized servers can
be set to an energy-saving state by combining VMs locate@weral servers onto a single

server using VM migration.

12 Chapter 1: Introduction

1.2.4 Energy Management

Increasing energy efficiency in cloud computing and desigrnergy-efficient data-
centers is one of the important issues in this area. Somé@wuo this problem include
the development of Energy-efficient hardware architecihieh deploys techniques such
as slowing down CPUs’ speed, turning off partial hardware poments, energy-aware job
scheduling and server consolidation used to reduce powesucaption by turning off un-
used machines and studying energy-efficient network potéand infrastructures. These
techniques are intended to achieve a trade-off betweeggravings and application per-

formance.

1.2.5 Bandwidth

One of the bottlenecks of cloud computing is bandwidth. ‘ithutilizing efficient
strategies, the network speed can decrease or the netwoHattavhen a large number of

users or some high transaction processes want to contatatheenter.

1.2.6 Traffic Management and Analysis

Analysis of network traffic is important for datacenters norease the system’s ef-
ficiency. Furthermore, network operators need to know haifi¢rflows through the net-
work in order to make management and planning decision®, Als important to improve

network performance in datacenter networks.

Chapter 1: Introduction 13

1.3 General Issues of Mobile Cloud Computing

Although there are many advantages offered by mobile clongputing, still there are
many problems that hinder mobile cloud’s success and amtgptinese issues should be
seriously tackled to realize the potential of promising ifeblouds.

The major challenges in mobile cloud computing come fromctineracteristics of the
involved elements, namely, mobile devices, wireless netvamd cloud],ELS],l];
this makes the implementation of mobile cloud computingem@ammplicated than station-

ary clouds. The major issues and challenges in mobile cloutpating are as following:

e Limitations of the Mobile devices: compared to personal computers, mobile de-
vices have limited storage capacity, poor display, lesspaational power and en-
ergy resource. Although smart phones have improved signtlig; they still have

battery power constraint.

e Network Bandwidth and Latency: mobile cloud computing may face the challenge
from the transmission channel due to the intrinsic natuteamstraints of wireless
networks and devices. Furthermore, the cloud services méyclated far away from

mobile users, which in turn increase the network latency.

e Heterogeneity: heterogeneity can appear among mobile devices, wirelés®ries
and cloud servers; this can cause major issues in the iti@granteroperability,
compatibility, portability and efficiency of different eteents. It is even possible to
experience heterogeneity in a single type of mobile deyis&®less network and

cloud.

14

Chapter 1: Introduction

Service Availability: mobile clients may not be able to connect to the cloud due to

traffic congestion, network failures and being out of signal

Security and Privacy: mobile devices usually lack the computing power to execute
sophisticated security algorithms. Moreover, it is diffido enforce a standardized
credential protection mechanism due to the variety of neotdédvices. Clouds and

wireless networks also have security and privacy problems.

Reliability: maintenance, fault tolerance and reliability can be areissuall levels

and elements of mobile cloud computing.

Context-awareness issueontext-aware and socially-aware computing are insep-
arable traits of contemporary handheld computers. Desigrésource-efficient ap-

plications which are environment-aware is an essentiad.nee

Elasticity: cloud providers confront situations in which there is moeendnd than

available resources. The negative impact of cloud-resoumavailability and service
interruption for mobile clients is more severe than statigrclients connected to the
wall power and stationary networks. Frequent suspensi@nefgy-constraint mo-
bile clients due to resource scarcity, not only shrinksuisefss of cloud outsourcing
for Mobile users, but also divests privilege of intensivenpaitation anytime, any-
where from mobile users. Hence, several challenging tasgs fesource provision-
ing without service interruption, quick disaster recoyenyd high service availabil-
ity) need to be realized since service unavailability artdrimiption prolong execu-
tion time, increase monitoring overhead, and consume pimames’ local resources,

especially battery; therefore, emerging solutions musrbployed to allocate cloud

Chapter 1: Introduction 15

resources on demand.

e Live VM migration issues: executing resource-intensive mobile application via VM
migration-based application offloading involves encagisoh of application in VM
instance and migrating it to the cloud, which is a challeggask due to additional

overhead of deploying and managing VM on mobile devices.

e Cloud Policies for Mobile Users: cloud service providers apply certain policies to
restrain service quality to a desired level. Also, servicavisioning, controlling,
balancing and billing are often matched with the requiraimei desktop clients
rather than mobile users. Considering the great differenrcegred and wireless
communications, disregarding mobility and resource ktiins of mobile devices
in design and maintenance of cloud structures can significanpact on feasibility
of mobile cloud solutions. Metrics such as bandwidth quathrumber of API calls
per day limit users and have impact on users’ experienceaeidre, it is essential to

amend restriction rules and policies to meet mobile userglirements.

e Service Execution and Delivery:cloud-mobile users, require an efficient monitor-
ing means to measure and evaluate the quality of servicerdoejve. Considering
the mobile clouds’ dynamism, several network challengek s inconsistent band-
width and packet delivery ratio, delay, jitter, and netwbliks hamper service deliv-
ery and they raise ambiguity in SLA. This ambiguity can s dispute between
cloud vendors and mobile cloud end-users. Therefore, cugtatic SLA can be
fleshed out with more powerful, dynamic representation anditaring techniques

established in heterogeneous wireless environment fadailoobile users.

16 Chapter 1: Introduction

e Mobile Cloud Billing: user mobility in the rapidly changing environment diverges
the cloud billing system in mobile clouds from billing schenm cloud comput-
ing. Designing an appropriate billing system for mobileutls with dynamic hetero-
geneous environment requires considering additionalnpeters compared to sta-
tionary clouds. Interception latency, jitter, sessiorstablishment delay, bandwidth
capacity, and quality of security are examples of major p&tars in designing a

mobile cloud billing system.

1.4 Motivations

Managing a cloud system is complex due to its unpredictailg@ment. It is ex-
tremely challenging to obtain accurate information on tta¢esof the system. Moreover,
it contains large resources which are shared and requirpleamolicies to manage them.
The main factors affecting the resource management in doaigerformance, functional-
ity and cost.

Resource management in cloud computing is associated wittuditing workloads
which pose a major challenge to elasticity of cloud computifhis fluctuation can occur
in planned or unplanned spikes. For the first case, the ituaain be predicted in advance
and resource allocation can be done in advance. For thedeess, resources have to be
allocated on-demand and reallocated when needed. Thispbiscalled “Auto-scaling” in
cloud]. The cloud service requirements indicate thattiopted resource management
policies in cloud computing should be different from theipiels applied to the traditional
network systems.

For a cloud provider, predicting the dynamic nature of claseérs’ application de-

Chapter 1: Introduction 17

mands is inapplicable. For the cloud users, the task shaeldopleted on time with
minimal cost. An efficient resource allocation scheme nexpuovercoming lack of limited
resources, resource heterogeneity, locality restristienvironmental necessities and dy-
namic nature of resource demand. Finding an optimum res@li@cation strategy in huge
systems like datacenters is challenging due to dynamic oentain resource demand and
supply [1].

Resource allocation in cloud can be classified into two mapsst

The first step is mapping the VMs onto Physical Machines (PRRgsources in cloud
include the software and hardware required to execute usgdeads. Examples of such
resources are memory, CPU, bandwidth, storage and netwodouR® allocation is the
process of allocating optimal resources to the tasks régdids/ the cloud users. In a
cloud environment, resource allocation generally mealosating VMs while satisfying
the configurations specified by the user. The configuratiociside the operating system,
MIPS, network bandwidth, storage, etc.

The second step is mapping the workloads onto the VMs: Tlseamother situation
where the cloud contains a set of existing Virtual Machined a built environment with
predefined memory, CPU and bandwidth. The users submit tlekil@ads which may be
time varying and deadline based. These workloads need tthdoated to the optimal re-
sources such that the workloads are processed efficierttly.step of allocation is referred

as mapping the workloads onto the VMs.

18 Chapter 1: Introduction

1.4.1 The Key Definitions in Cloud Resource Management

The important definitions in cloud resource managen’g\t Igj] are highlighted as

follows:

e Resource allocation: refers to the process of provisioning available computer re
sources for the cloud users’ requests. This includes thegooing of VMs in PMs

and also, user task requests on VMs.

e Virtualization: Virtualization is a technology that abstracts away theitietdphys-
ical hardware and provides virtualized resources for eyl applications. A virtu-
alized server is commonly called a VM. Virtualization forthe foundation of cloud
computing, as it provides the capability of pooling compgtiesources from clusters
of servers and dynamically assigning or reassigning iresources to applications

on-demand.

¢ Quality of Service (QoS):refers to metrics such as task blocking rate, task rejection
rate, delay, response time, operational cost, througmmpaimization of profit and

etc.

e Workload balancing: load balancing of tasks among the resources to improve the

system utilization.
e Energy Management:refers to optimized use of energy in the datacenter.

e Admission control: one of the general policies to be considered in cloud regourc
management. It makes decision whether to admit a task/setuée processed in

the cloud.

Chapter 1: Introduction 19

1.4.2 The Components of Cloud Resource Management System

The cloud resource management system contains the fotidwasic components:

e SLA Management: The Service Level Agreement (SLA) Management module makes
an agreement between the user and the service provideefeethiices requested by
the user. The agreement contains the resource requireofemisser like the CPU,
memory and other architectural configuration of a VM. It disdudes QoS require-
ments such as task blocking rate, task rejection rate, dalsgonse time, task com-
pletion time, operational cost, etc. The user can also regowith service provider
regarding the price of services. The SLA Management modutencunicates with
the admission controller before making an agreement. Aftecessful agreement,

the user requests are sent to the scheduler.

e Admission Controller: The request made by the client through SLA is validated
based on the availability of requested resources and otimstraints specified in the
SLA. If the requirements cannot be satisfied, the requesjésted by the service

provider. This avoids provisioning of invalid tasks in tHeuwxd resources.

e Pricing: Pricing is done for dynamic tasks based on their usage ofiress. The

time and cost of the consumed resources are calculated al timme manner.

e Scheduler: The scheduler provisions the requested tasks in the alaiéids or
provisions a requested VM in a PM. There will be a queue tordete the priority
of the task. Only one task can be processed on a VM at the sareeThe scheduler
should decide about which VM or PM the task has to be provesdoon. For this

purpose, the scheduler should have information regartimgtatus of the datacenter

20 Chapter 1: Introduction

such as available number of CPUs, available amount of merangwidth, etc. The
scheduler may get this information from a load balancere®éompletion of tasks
requested by the user, the pricing module is invoked to pecie bill according to
the resources consumed by the user.This information istseghe user through the

SLA management module.

e Load Balancer: The load balancer finds the overused and underutilized VMs or
PMs. It balances the workload among the VMs to control theuese utilization.
Also, energy can be saved by utilizing the idle resources.ldad balancer interacts

with scheduler and admission controller to balance the lwarkon VMs.

1.4.3 Resource Management Requirements

Resource management in cloud system is different from thé@iaal network systems

and the characteristics of the cloud’s services, users am[tectureglelds some require-

6] Eﬂ

e Resource Provisioning:Cloud providers should utilize robust resource management

ments in resource management which should be carefullyeaded

techniques in cloud environment which efficiently deal vitite problem of VM pro-
visioning and VM placement. It is crucial to have clear sioltfor how to match

tasks to available VMs.

e Job Scheduling: Cloud providers should address the problem of job scheduling
which is the order of giving service to the user requests erdtder of execution

of the applications.

In all chapters of this thesis, we have used First Come Firse8¢FCFS) scheduling

Chapter 1: Introduction 21

algorithm. However, in Chaptérl 5, we have also applied aipyitmased scheduling
algorithm. Our priority scheme includes two types of task#hwlifferent levels of

priority. In each level of priority, tasks are served on FCESI§.

e Scalability: Cloud providers should use flexible mechanisms to dynanyicatle
up and down resources on demand in terms of VMs. A cloud useiires to access
the resources on-demand. The cloud system may scale up ittoaddavailable
resources when the system is experiencing high user denmahid may later scale
down when the user demand decreases. A scalable cloud syistechecks the idle

VMs and turns them off if they are idle for more than a specifiet

Increasing the workload on available resources is calletirgrcin and increasing
the workload by adding resources on demand is called scalibgA flexible cloud

system adopts these scaling methods to increase the systgimation.

e Load balancing: Cloud providers should utilize dynamic load balancing alttons
which can strongly control the abrupt changes in workloatigovide better results

in heterogeneous and dynamic environments.

The applied load balancing algorithms should also preveaqipropriate utilization

of the resources in the cloud system; under-utilizatiomltesn waste of resources
and energy and over-utilization leads to slower responsestiof the applications. To
tackle this problem, migration of VMs is one solution whishcalled as autonomic

management of resources in cloud.

However, as the distribution attributes become more coxmabel dynamic, some of

the dynamic load balancing algorithms can become ineffi@ed cause excessive

22

Chapter 1: Introduction

overhead which can result in degrading of system perform@].

Pricing: The primary attribute of cloud computing inspired from itjilcomputing
is its feature of pay-per-use model, i.e., services remtign®ugh cloud are charged
based on service consumption. The services may be hardwsoéware appliances.
This leads to the need of a pricing model whose objectiveafitpnaximization for
the service providers and quality of service for the usersrddver, there is a trade-

off between these two objectives along with service regihestuation in cloud.

Availability: The system becomes unavailable due to reasons like hardwaodt-
ware failures, load fluctuations, long waiting time of jobs;. The traditional method
to provide high availability is providing extra idle resoas to be used in case of fail-
ures which can result in wasting resources. Dynamic methoglsequired in cloud
systems to automatically detect any failure or unavailgtaind shift the tasks to the

available resources in a short time.

Quality of Service (QoS) constraints: This includes various parameters like task
blocking and rejection rate, delay, cost, response timeutihput, etc. A cloud
system providing services to its customers should fulfdiitiguality of service re-

guirements.

Overheads: Workloads to be processed on virtualized cloud platformg beaCPU
intensive or network 1/O intensive. The in-depth underdiag of these overheads
and network bandwidth as a constraint is necessary forteferesource manage-

ment in the cloud.

Chapter 1: Introduction 23

1.4.4 The Requirements of Mobile Cloud Computing

Mobile clouds have some requirements coming from the cleriatics of their services
and the involved networks; these requirements play an itapbrole in the development
of models and solutions in this field.

As we have discussed in Section]1.3, the integration of raatelvices, wireless net-
works and clouds raises some major issues. The coexisténicese heterogeneous net-
works and the characteristics of the mobile services, easesgme requirements which
should be met.

Mobile cloud computing requires wireless connectivityhwiite following features:

e Mobile cloud computing requires an “always-on” connetyivior a low data rate

cloud control signaling channel.

e Mobile cloud computing requires an “on-demand” availableeless connectivity

with a scalable link bandwidth.

e Mobile cloud computing requires a network selection th&esaenergy-efficiency

and costs into account.

The coexistence requirements in mobile cloud computingnatelimited to mobile
device and wireless network connectivity necessities.rdieto represent the operational
requirements in mobile clouds, we describe the generakafitg scheme in mobile device.
Fig.[1.2 illustrates the overview of the scheme.

The components of an offloading system can be divided in tangd: components on
the client (i.e., the mobile device) and components in therenment (i.e., either a cloud,

a cloudlet, a peer device, or a hybrid environment).

24 Chapter 1: Introduction

Profiling
Partitioning
Resource
Client Monitoring Offload
Decision
Environment
Rsejw[ce Offload Offload
ppRly Operation Operation

Figure 1.2: The general offloading schemé [50].

The profiling component in a mobile device is able to assessvdy in which the ap-
plication is functioning through various mechanisms, saststatic or dynamic analysis.
The information obtained from the profiling component mayused by the partitioning
component, which aims to split the application in compos@itpredefined granularities
and identify which of them can be offloaded. There is also @ neassess the resources
(both local resources in the mobile device and remote ressuwn the cloud) that are avail-
able for running the application. Thus, the resource mamagécomponent spans both the
mobile device and the cloud. In the mobile device, the res®aronitoring component as-
sesses parameters such as battery level, CPU load, wirelessation quality, etc. In the
cloud, the resource supply component manages the exteswinces that may be used in
offloading, through mechanisms such as discovery and poowmg). Resource discovery is
useful in opportunistic approaches, such as cyber foraginghich the mobile device tries
to find available offloading targets in its enviroan [5REsource allocation is a proac-

tive approach, highly utilized in cloud environments, inigfhresources are dynamically

Chapter 1: Introduction 25

assigned to adjust to computing needs. The offload proce=i meeds to be an iterative
process, due to mobility and the changing nature of the ¢ixscaonditions. For exam-
ple, the mobile user may switch from Wi-Fi to 3G/4G or may teacritical battery level,
which affects the offloading process. The offload decisiommanent receives informa-
tion from application monitoring and resource managemémnt mobile device, to assess
the current offloading needs and conditions, and from pteviterations of the offload
operation, to assess their benefits and defects.

Offload decision making scheme in a mobile device can chobse, when and where
to offload. However, as we will describe in Chagdiér 5, the s&heim‘what, where and
when” offloading in the mobile devices can cause some seirssugs for the cloud which
is hosting the offloaded job requests; the coexistencesdseigveen the offloaded jobs of

mobile devices and the cloud servers is the main challengadaeess in Chaptér 5.

1.5 Obijectives

In Section1.111, we have introduced the five essential ckeniatics of clouds high-
lighted by NIST @]. However, in Sections 1.2 dndl1.3 which key challenges of clouds
were presented, we have seen that these characteristiostaealized in the current clouds
appropriately. Also, the cloud requirements which areioedl in Sectiol 1}4, emerge the
need of developing dynamic and comprehensive models iratbes.

In this thesis, we deal with resource allocation, elastiaitd on-demand service provi-
sioning issues in clouds and each chapter deals with sorkedfitlaese issues.

The major contribution of this thesis is providing efficieasource allocation solutions

for cloud datacenters. Note that in this work, “resource’eiferred to the VMs which are

26 Chapter 1: Introduction

instantiated on PMs and the proposed resource allocatloh@ts provision the requested
tasks on available VMs in PMs.

We have analyzed the behavior of laaS cloud datacentensghrour analytical and/or
simulation models. In all cases, we have studied the systperformance in different
operating regions including linear, transition to satioratand saturation regimes. Perfor-
mance metrics are in linear operation region if they arealilyedependent on the input
parameters including mean task arrival rate, mean taskcserate and number of active
servers. The system is in saturated operation region wteepdtformance metrics do not
change significantly as the input parameters increasejghise to the high traffic load
imposed on the cloud system and the fullness of the system.

In the chapters which are mostly focused on stationary aldue., Chapterls| 3 and 4),
servers are partitioned into pools of hot (i.e., always @@rm (i.e, switched on without
any instantiated VM), and cold machines (i.e., switchedfaiere is a demand). The
cold PMs can be switched on according to user request increonghe hot PMs can be
switched off due to energy preservation policy. As an exoeptn Sectiol 3.2 the servers
are only partitioned into hot and cold pools as we aim to etaluhe sensitivity of the
energy expenditure on the partitioning threshold. Thegrerdnce parameters which have
been evaluated in this thesis include task blocking prdityatiotal delay, utilization and
energy consumption. Task blocking probability is the piolig of rejecting the task due
to the lack of room in the waiting queues or insufficient reselcapacity.

In order to prevent the cloud system getting into the saturatgion, we have devel-
oped dynamic algorithms to control the admission of task@s. These algorithms are

discussed in Chaptel 4 and they are based on controlling ps&eesrsuch as full rate task

Chapter 1: Introduction 27

acceptance threshold and filtering coefficient or estaiblgstihresholds for task arrival rate
and task blocking probability. Full rate task acceptanceghold is the threshold of ac-
cepting all of the arriving tasks into the cloud system.éfitig coefficient is the coefficient
of task admission in the system and determines the acceptatecof the arriving tasks.
The characteristics of mobile devices and wireless netwaakes the development of
mobile cloud computing more complicated than the statpobyuds. Offloading requests
from a mobile device usually require quick response, mayfrequent, and are subject to
variable network connectivity. Also, the volume of worktbahich is going to be offloaded
is not predefined or known for a mobile device when it starsiifload process. There is a
possibility that the mobile device offloads a large bursesks toward the clouds or it may
scarcely offload any application to the cloud; from this d&bn we can conclude that the
mobile device has a stochastic behavior during the offloadgss. In this thesis, we ad-
dress the elasticity in mobile cloud computing and the logfeneity issues between cloud
and mobile devices. We have developed a solution whichatksaresources for on-demand
job requests in the mobile clouds. This solution can alsqipdied to the stationary clouds
which their users’ applications fork new tasks. The solutises prioritization method to
provide resources for offloaded tasks from the mobile davitbe details of the proposed

solution for mobile requests and the priority schemes atiéned in Chapterk]5.

1.6 Main Contributions

This section introduces our main contributions in the clsystems’ resource allocation

and admission control.

28 Chapter 1: Introduction

Table 1.1: The illustration of main contributions in thig#is.

Thesis Structure | Contributions | Challenges |

Chapter[B: Investigating Examining the the trade-off Lack of analysis of the be
The Behavior of laa$ between performance andchavior of laaS Clouds in
Cloud Datacenters power consumption in thethe linear and transitior
proposed model in differr regimes

ent operating regions. Eval
uating the effects of poal
threshold and mean look up
time in hot and cold pools
on the system performance

-

U7

Chaptei $t: Task AdmissionDeveloping several task ad-Lack of control over mov-
Control for Cloud Server mission control algorithms ing to the saturation operat
Pools based on thresholds for taskng region
arrival rate and task block
ing probability or based on
two controlling parameters,
full rate task acceptance
threshold and filtering coef
ficient

Chapter[b: Prioritizatior) Deploying two flexible re4 Lack of efficient resource
of Overflow Tasks to Im- source allocation mecha-management schemes for
prove Performance of Mo- nisms which use prioritiza- mobile clouds and clouds
bile Cloud tion and developing a virt which their users’ applicar
tual machine provisioning tions fork new tasks
model

e In Chapter B, we utilize an analytical model which consistshwe interactive
stochastic submodels and is solved via successive fixetliition. In Sectioh 311,
we evaluate the behavior of an laaS cloud datacenter in vé@orers are partitioned
into pools of hot, warm and cold machines. We examine thehehaf this pool
management scheme, specifically, the trade-off betwedorpgnce and power con-
sumption in different operating regions including lineg@ecation, transition to satu-
ration, and saturation. In SectibnBB.2, we consider a modehich partitioning only

uses hot and cold pools. Also, we investigate the effect®of fhreshold and mean

Chapter 1: Introduction 29

look up time in hot and cold pools on the performance of an EHa&d system in the

different operating regions.

e In Chaptei#f, we have added several admission control digasibf task arrivals to
the resource allocation model introduced in Sedfioh 3.1h¥ve defined two admis-
sion control algorithms of task arrivals in Section]4.1 tefxéhe cloud system in the
non-saturation operating region. These admission coalgokithms are executed in
two steps: first step is adjusting the partitioning coeffitiaccording to the mean
task arrival rate; the second tier is tracking the task blaglrobability in the sys-
tem and adjusting the task acceptance rate according tod¢defned task blocking

probability thresholds.

In Section’ 4.2, we have proposed two other task admissiaritigs to keep the
system in the stable operating region. We have used two albndy parameters,
full rate task acceptance threshold and filtering coefficiendeploy task admission
policies. First algorithm is lightweight and appropriate the cloud systems with
smooth changes of task arrival rate. This algorithm is basgdng-term estimation
of average utilization and offered load. Second algoriterauitable for highly dy-
namic systems and is based on instantaneous utilizatidaredfload represents the
traffic load in the system and is computed as the mean taskalnmie into the cloud

system divided by the mean task service rate.

¢ In Chaptefb, we have defined two flexible resource allocatieahanisms for clouds
where their users’ requests fork new tasks, especially,lmoluds. These mech-
anisms use prioritization method to provide appropriateise for offloaded tasks

from the mobile devices. The first mechanism gives the fubrgy to the forked

30 Chapter 1: Introduction

tasks over newly arrived tasks. The second mechanism es$tabla threshold to
control the priority of the forked tasks over newly arrivegks. This chapter also

includes a model for virtual machine provisioning.

Table[1.1 outlines the main contributions presented inttigsis.

1.7 Thesis Organization
The rest of this thesis is organized as following:

e Chaptef® discusses the state-of-the-art research works iiretds of resource allo-

cation and admission control in cloud computing.

¢ In Chaptei B, we evaluate the performance and power consumgitithe proposed
laaS cloud model in different operating regions and theetraifl between perfor-
mance and power consumption. Also, we have analyzed thet efgrovisioning

overhead time on the proposed laaS cloud model.

¢ In Chaptef# we have introduced a model for task admissiorradrased on thresh-
olds of task arrival rate and blocking probability and we énavaluated the perfor-
mance this model. Also, we have presented two dynamic tasksatn control

algorithms which have been developed based on task filtpofigy.

e In Chaptef b, we have developed a solution which allocatemuress to cloud job
requests which can fork new tasks, specifically, on-demamdgquests in the mobile
clouds. In this model, we have prioritized serving the owsrftasks over the new

incoming tasks. Also, we have modeled virtual machine @iowing in this solution.

Chapter 1: Introduction 31

e Chaptef b concludes the thesis and and discusses someattisefoli future work.

Table[A.2 lists the parameters defined in this work.

Chapter 2

Related Work

2.1 Resource Allocation in Stationary Cloud Computing

Resource provisioning in stationary cloud computing has leeg¢ensively studied with
different focuses. In this section, we are going to explbeedurrent research works in this
area.

In [@], energy-efficient virtual resource allocation féetcloud has been formulated
as a multi-objective optimization problem which is solvesihg an intelligent optimization
algorithm. The work presented in_|65] has proposed a comgesbntrol method using
an index for evaluating fair resource allocation in caseanfgestion. In3], authors have
proposed a dynamic resource allocation in a cloud enviromimkich considers computing
job requests that are characterized by their arrival andié®an times, as well as a predic-
tive profile of their computing requirements during theitiaty period. Two algorithms to
adjust resource allocation and task scheduling adaptbasgd on the actual task execution

time have been proposed In [42].

32

Chapter 2: Related Work 33

In [@], allocating VMs to applications with real-time tasks formulated as a con-
strained optimization problem. Since an exhaustive sefncholutions has exponential
complexity, polynomial-time heuristic model was proposedolve the problem. More-
over, the cost obtained by this heuristic model was compartguthe optimal solution and
an Earliest Deadline First (EDF-greedy) approach.

In [Q], an ad hoc parallel data processing framework has peesented to exploit the
dynamic resource allocation for both task scheduling asll éxecution in laaS clouds.
Specific tasks of a processing job can be assigned to diffgneas of VMs. The algorithm
presented irmO] formed groups of VM instances accordirntheéa runtime deadlines and
packed VMs in the same group on the same servers. Moreosbytds down some servers
in time when the service request decreases in order to reshergy consumption.

The work presented irﬁLS] has proposed a resource allocatiodel using combi-
natorial auction mechanisms which uses energy parameléree algorithms have been
introduced for different aspects of resource allocation.

] has applied the queueing theory to evaluate the aveesp®nse time and explore
the trade-off between performance and cost in the hybridccl@ollaboration of private
cloud and public cloud). By taking advantage of Lyapunov mpation techniques, an
online decision algorithm is designed for request distrdsuwhich achieves the average
response time arbitrarily close to the theoretically optimand controls the outsourcing
cost based on a given budget.

The work in @] has presented a multi-resource cloud comgunhodel with resource

trade-offs. In this model, each user is allowed to specifytiple resource requirements

(corresponding to the requirements of different task im@etations) and the utility a user

34 Chapter 2: Related Work

derives from the resources allocated to him is the maximumbax of tasks he can com-
plete with these resources. The work has proposed two eliffenechanisms, which reflect
two different classical economic approaches for fairlpediting resources: the Nash Bar-
gaining (NB) mechanism and the Lexicographically Max- MinrfEeMMF) mechanism.

The work presented irlZLL4] has proposed a randomized autiEmmanism based on an
application of smoothed analysis and randomized redudiorlynamic VM provisioning
(pricing tailor-made VMs on the spot) and pricing in geotdlgited cloud data centers.
This auction achieves truthfulness in expectation, patyiabrunning time in expectation,
and(1 — ¢)-optimal social welfare in expectation for resource altawra wheree can be
arbitrarily close to 0.

] has used online procurement auction mechanisms teesasldne resource pooling
issue in cloud storage systems. The online nature of theaustin line with asynchronous
user request arrivals in practice. With characterizinghftuness conditions under the on-
line procurement auction paradigm, authors have convérgethechanism design problem
into an online algorithm design problem, with a marginatipg function for resources as
variables set by cloud storage service providers for omgnegurement auction.

The problem of optimal placement of VMs in clouds was tackief8] for minimizing
latency. Complexity was reduced by recurring to a hieraadtsplit of the placement prob-
lem into two reduced complexity sub-problems of choosirggdatacenters, then choosing
the specific racks and servers, and applying a partitioninifpe> application placement
graph.

A resource allocation problem iQiO] was formulated. Irstimiodel, later tasks could

reuse resources released by earlier tasks and the problesoWad with an approximation

Chapter 2: Related Work 35

algorithm that could yield close to optimum solutions in d&ypomial time.

However, to the best of our knowledge, no research has beenatothe effects of the
variation of offered load on cloud computing centers’ bebiain linear and transition to
saturation region. This is particularly important for ceston and admission control. We
have examined the effects of the variation of offered loadlond systems’ performance

in the Chapters]3 td 5.

2.2 Task Admission Control in Cloud Systems

Resource allocation and admission control in clouds hava beetopic of much re-
search effort in recent years. Some of the solutions weredoas queueing theory: for
example,EL] made use of the queueing information avaalablhe system to make online
control decisions. It used Lyapunov Optimization to desagnonline admission control,
routing, and resource allocation algorithm for a virtuatiz-datacenter. The algorithm con-
siders a joint utility of the average application througtgmd energy costs of the datacenter
in decision making. In[41], authors proposed an autonorsoheme for admission control
in cloud services aiming at preventing overloading, gu@@ing target response time and
dynamically adapting the admitted workload to compensatetianges in system capacity.
They employed an adaptive feedback control scheme alomgstt a queue model of the
application. Cloud service, modeled using queuing theary,cntrolled through adaptive
proactive controllers that estimate whether services seatk of the resources in the near
future or not, was discussed In [2].

A Markov Decision Process (MDP) framework was proposeuj f& model admis-

sion control in cloud while Approximate Dynamic Programmi(ADP) paradigm was

36 Chapter 2: Related Work

utilized to devise optimized admission policies. [In [24{reaars formulated an optimization
problem for dynamic resource sharing of mobile users in MoBloud Computing hotspot
with a cloudlet as a Semi-Markov Decision Process (SMDPivkias, then, transformed
into a Linear Programming (LP) model to obtain an optimalgoh. A unified frame-
work of admission control and resource allocation was ediin] which modeled
the system’s dynamic behavior with a group of state-spaageispscaled between differ-
ent desired operation points and used a set-theoreticatdethnique to solve admission
control and resource allocation problems.

A technique for determining the effective bandwidth for esggated flow was developed
in [23] to make admission decisions using network calcudughors also examined the re-
lationship between effective bandwidth and equivalentacdyp for aggregated flow, while

] modeled the admission control problem in a cloud usheg&eneral Algebraic Mod-
eling System (GAMS) and solved it under provider-definetirsgt. Same authors iEIB’?]
presented a technique for admission control of a set of botéily scalable services and
their optimal placement into a federated Cloud environm&hey have considered in their
model that a request may also be partially accommodatedierdéed external providers,
if needed or if it is more convenient.

A session-based adaptive admission control approachrtoalized application servers
was presented iru[4]. Also, a session deferment mechanisnmyaemented to reduce the
number of rejected sessions. m[64] three key charadsisf cloud services and laaS
management practices was identified which are burstineserince workloads, fluctua-
tions in virtual machine resource usage over time and \irechines being limited to

pre-defined sizes only. Based on these characteristicst pegggosed scheduling and ad-

Chapter 2: Related Work 37

mission control algorithms that incorporate resource loweking to improve utilization.
A combination of modeling, monitoring, and prediction teitfues was used to avoid ex-
ceeding the total infrastructure capacity.

Our task admission control solutions presented in Chaptee 4iaified with our re-
source allocation solution discussed in Secfion 3.1. Tlpgsed task admission con-
trol algorithms are based on establishing thresholds &k #&arival rate and task blocking
probability in one solution, and based on full rate task ptaece threshold and filtering

coefficient in another solution.

2.3 Resource Allocation in Mobile Cloud Computing

Several research studies have proposed solutions to adiresssues of computa-
tional power and battery lifetime of mobile devices by oftloay computing tasks to cloud.
CloneCloudl[12] has been an approach for extending the cont¥ip-based clone cloud
offloading from LAN surrogates to cloud servers. OS suppgri¥M migration was in-
troduced in CloneCloud. MAUJH4] has provided method levaleoffloading based on
the .NET framework. MAUI aimed to optimize energy consuraptdf a mobile device by
estimation and evaluating the trade-off between the enewggumed by local processing
versus the transmission of code and data for cloud offloadiegision process in MAUI
is based on information and complex characteristics of thbilm environment. A frame-
work for moving smartphone application processing to tledlcenters was introduced in
ThinkAir [Q]. This framework is based on the concept of siplaone virtualization in the
cloud and addresses lack of scalability by creating VM of mglete smartphone system

on the cloud. ThinkAir provides on-demand resource aliocaby dynamically manag-

38 Chapter 2: Related Work

ing VMs in the cloud via using an execution controller. The&xion controller handles
decision-making and communication with the cloud senterohsiders execution time, en-
ergy, and cost to make decision in order to achieve optimurfopeance. With regard to
the network profile parameters, device profile parameteais paogram profile parameters
of the smartphone, ThinkAir dynamically allocates the klde cloud resources to the pro-
grams. CMcIoudH9] is a mobile-to-cloud offloading platfornhiah attempts to minimize
both the server costs and the user service fee by offloadingaag mobile applications to
a single server as possible, while trying to satisfy thedatpgrformance of all applications.
To achieve such goals, CMcloud exploited architecture pevdmce modeling and server
migration techniques. In POMAC framework (Properly OffloepMobile Applications to
Clouds)], other than offloading decision making techeigan offloading mechanism
was designed through method interception at Dalvik virtnathine level to allow mobile
applications to offload their computation intensive method

In most of the works related to resource allocation in mobiteid computing, there
are some trade-offs among power consumption, QoS parasraatdrcosts. These objec-
tives are usually dependent on cloud resources, applicapoofiles and network param-
eters. COSMOS (Computation Offloading as a Service for Mobéegi@®s) syste 7]
has provided computation offloading as a service to mobiecds. The COSMOS system
receives mobile user computation offload demands and &llethem to a shared set of
compute resources that it dynamically acquires (througbkds) from a commercial cloud
service provider.

The partitioning of elastic mobile datastream applicatiaas formulated irEO] as an

optimization problem by minimizing the cost function whishcombination of communi-

Chapter 2: Related Work 39

cation energy and computation energy.

In], a model has been built that considers some charsiitsrof the workflow’s
software and the network’s hardware devices. With this hdkle objective functions have
been constructed which guide the offloading decisions. Aistwalgorithm was presented
in this model that produced offloading plans according teétabjective functions and their
variations.

A technique of coalesced offloading was proposeBL [69]¢ctvbkploited the potential
for multiple applications to coordinate their offloadingjuests with the objective of saving
additional energy on mobile devices. Authors believe thasénding these requests in
bundles, the period of time that the network interface staythe high-power state can
be reduced. Two online algorithms were presented, coliegtreferred to as Ready, Set,
Go (RSG), that make near-optimal decisions on how offloadaggests from multiple
applications are to be best coalesced.

In [51], some practices for managing the resources reqtmretie mobile cloud model
has been formulated, namely energy, bandwidth and clouguobtng resources. These
practices were realised with the authors’ mobile cloud rieiddre project, featuring the
Cloud Personal Assistant (CPA). In order to realise resouloeadion in their work, they
have estimated a cost model for each VM running on a servéreircioud and they have
calculated the summation of the costs required to run theipalyresources required on
the server.

In another attempt to connect mobile devices to cloud serive@], given an appli-
cation described by a task dependency graph, an optimizptmblem was formulated to

minimize the latency while considering prescribed reseuwtdization constraints. Authors

40 Chapter 2: Related Work

have proposed Hermes, a fully polynomial time approximmasicheme (FPTAS) algorithm
to solve this problem. Hermes provides a solution with leyemo more thanl(+ ¢) times
of the minimum while incurring complexity that is polynorhia 1 /e and the problem size.

The proposed model irlZLL?] is based on the wireless netwalkdc(WNC) concept
and a multi-objective optimization approach using an ev&sed finite state model and
dynamic constraint programming method has been used towiatethe appropriate trans-
mission power, process power, cloud offloading and optimwB @Qrofiles. However, es-
timation and approximation techniques used in this workr@pmate the parameters lin-
early and the main objective of this paper concerns perfoo@anetrics of mobile devices
and users and the challenges of cloud computing centersiaéveen covered.

In [58], other than presenting a study on virtual machinelaepent, authors have
evaluated the impact of VM deployment and management folicgtion processing by
analyzing the parameters such as VM deployment and exedirtie of applications. The
work presented ir@Q], has analyzed the impact of perfomaanetrics on the execution
of applications (cloudlets). Performance metrics assediwith the execution of cloudlets
in distributed mobile cloud computing environment are preésd as cloudlet offloading,
cloudlet allocation to VM, cloudlet scheduling in VM, cldetimigration in datacenter and
cloudlet reintegration.

The work in Q] has presented a task scheduling and resailomation scheme which
used the continually updated data from the loosely fedé@eneral Packet Radio Service
(GRPS) to automatically select appropriate mobile nodesatbqgipate informing clouds,
and to adjust both task scheduling and resource allocatioording to the changing con-

ditions due to the dynamicity of resources and tasks in astiagi cloud.

Chapter 2: Related Work 41

Unlike most of existing works that either rely on a linear gnamming formulation
or on intuitively derived heuristics that offer no theocali performance guarantees, our
solution to the resource allocation problem in mobile ckbpdesented in Chapter 5 does
not simplify the computational complexity of offloading ptem to make it solvable. It
should be mentioned that our model is not dealing with th@adfing decision process in
the mobile devices and we assume that offloading decisiobdws made and our scheme
allocates cloud resources to the offloaded applicationsitney arrive in the cloud data

centers.

2.4 The Markov Models with Multiple Priority Classes

The Markov models with multiple priority classes have besedin different fields. For

example, a Markov chain flow decomposition for a two classrfisi queue in presented in
I

Also, threshold-based priorities have been utilized indéeelopment of Markov mod-
els. Forinstance, irmls], a multiserver queueing systeth twio priority classes have been
employed which has a threshold defined according to numbsgrgérs in the system.

In another approach, a threshold based Markov chain sysierhéden deployed in [62]
to model elastic and inelastic traffic flows in TCP-friendlyr@dsion control; the threshold
was defined according to some inelastic flow parameters.

In Chapter 5, we have utilized a Markovian multiserver quegeiystem with two

priority levels to model the two types of mobile cloud taskgwao classes of services.

42 Chapter 2: Related Work

2.5 Chapter Summary

In this chapter, we have surveyed the current research worllee area of resource
allocation in stationary and mobile cloud computing. Als@ have outlined the literature
related to task admission control in cloud. Finally, we hiaweoduced some Markov Mod-
els with Multiple Priority Classes which remotely inspiresl in the development of our

resource allocation model in mobile clouds presented in @&

Chapter 3

Investigating The Behavior of laaS

Cloud Datacenters

To save energy, physical machines (servers) in cloud dataxseare partitioned in dif-
ferent pools, depending on whether they are kept on at afl aind/or whether they have
virtual machines instantiated. Partitioning (pooling)sefvers not only affects the power
consumption of the datacenter but also the performance esmbnsiveness to user re-
quests. In Section 3.1, we examine the behavior of pool managt scheme in different
operating regions which correspond to linear operati@mgition to saturation, and satura-
tion, in particular the trade-off between performance amdgr consumption. Our results
in Section3.1.2 show that the definition of offered load preed in EE] does not offer
complete characterization of data center operation; agstéhe impact of task arrival rate
and task service time must be considered separatelulncﬁﬁa}ed load is defined as the

traffic load in the system and is computed as the mean taskknaie into the cloud system

divided by the mean task service rate.

43

44 Chapter 3: Investigating The Behavior of laaS Cloud Datacente

In Sectior 3.2, we analyze an efficient pool management nfodeloud systems that
partitions the PMs into a hot and cold pool to improve enefggiency. Servers are moved
from one pool to the other as needed to fulfill the incoming tagjuests, which are provi-
sioned on virtual machines running on the servers. The nfed#élires two levels of task
admission control: one at the global input, the other at sacher separately. We examine
the behavior of the cloud system in the regions of linear ap@m, transition to saturation
and saturation, from the viewpoint of task rejection rated anergy consumption. Fur-
thermore, we evaluate the sensitivity of task blocking piwlity and energy consumption
to the pool partitioning threshold and the value of mean lgpkime in hot and cold pools,
respectively, in different test scenarios.

This chapter is organized as follows: Section 3.1 provithesgroposed model of re-
source allocation in a pooled laaS cloud and presents thegseaf trade-off between per-
formance and power consumption. In Secfion 3.2, we evathateffects of pool threshold
and mean look up time in hot and cold pools on the system pedioce. Sectioh 3.3

outlines the summary of this chapter.

3.1 Characterizing Energy Consumption of laaS Clouds

in Non-saturated Operation

Energy efficiency is one of the top priorities in a cloud dataer Bl], which is why
ways to reduce energy consumption without sacrificing perémce are among the most
important research topics. If the cloud datacenter is cardig) so that user tasks are pro-

visioned on VMs executing on servers or PMs, energy effigianay be improved by

Chapter 3: Investigating The Behavior of laaS Cloud Datacente 45

dividing the PMs in three groups or po[33]. In this apmtgaPMs in thecold pool are
normally kept switched off, while PMs in thearmandhot pool are normally switched on,
the latter having VMs already instantiated and ready to ision user tasks. When a user
request that asks for one or more VMs arrives, the pools aekell in sequence from hot
through warm to cold; if necessary, PMs are switched on andits instantiated. Upon
termination of user tasks, hot PMs with idle VMs are movedckidadhe warm pool, while
excess warm PMs are switched off and, thus, moved back tattegool.

In this manner, power consumption is made dependent on theatder load, which
leads to improved energy efficiency and ‘greener’ compuffijg At the same time, the
manner in which the PMs are partitioned into hot, warm, and pools will affect the
performance of the datacenter with respect to request mespame and probability that a
request will be blocked due to insufficient resource avditgb

Earlier performance studies of pool management schm{ﬁ’@ focused on laaS
clouds operating in saturation regime where all the PMs sserdially busy (almost) all
the time. This region is not really usable for cloud opemtance blocking of user requests
reaches values which are unacceptably high. Instead, srctiapter we focus on linear
and transition regimes which are more important in practide analyze the boundaries
between the operating regimes with respect to overall sy$dad, which is a function
of the distribution of task arrival rate, task service tiraad look-up overhead needed to
decide whether the task can be accommodated or not. We e #thaeenergy efficiency of
this model in different scenarios.

Interestingly enough, our results indicate that charatey the load with a single

value, which is customary in the performance evaluatioroofimunication networklj[_JSS],

46 Chapter 3: Investigating The Behavior of laaS Cloud Datacente

Wy E T, pw ﬁ
Task PM Provisioning & Queue at . Actual Service
Arrival Global Queuing Pool Management each PM VM Provisioning Time ¢ Time
: : —>
Resource Assigning Module VM Provisioning Module

Instance
) ; Creation

=9 / N 2
E 3 y N = - \L out
in g8 @““ >@ I
VM Start
Pool Management FIFO artup
FIFO Module

Task blocking due to lack Task blocking due to
of room in queue insufficient capacity

Figure 3.1: The steps of servicing and corresponding d€tdespted from@B]).

is not quite appropriate for cloud datacenters. Namely,cbag for the appropriate PM

(or PMs) on which tasks from the current user request will lvigioned, necessitates a
certain overhead which depends on the characteristiceg€tjuest but also on the current
load of the system. Therefore, it is of interest to evaluhgegerformance of the scheme

under both varying user request arrival rate and user taslcedime.

3.1.1 Analytical Model

We assume that the laaS cloud center has a common input gueilethe three PM
pools have separate queues of their own. A single PM can hastrdoer of VMs simul-
taneously; this number is limited in order to ensure sattsfy performance level of the
VMs. Without loss of generality, we assume that all PMs armbgeneous as are the
VMs. Furthermore, we assume that a single pre-built VM imege satisfy all requests

]; however, the model can easily be extended to cover RidfoaVMs with different
characteristics. We assume that a PM can simultaneouslypua 10 VMs. VM Provi-

sioning on hot PMs has the minimum delay compared to warm altiRMs. Warm PMs

Chapter 3: Investigating The Behavior of laaS Cloud Datacente a7

need more time to be ready for provisioning and cold PMs regadditional time to be
started up before a VM instantiation. In this chapter, syst@s single task arrivals.

According to Fig[:3.11, when a task arrives, it will get acespor rejected due to lack of
room in the global queue. A task should wait until the Resodssgning Module (RAM)
processes it. RAM either assigns a PM in hot, warm or cold padidated by h, w and ¢
respectively) to the task or rejects it due to insufficiergazaty. If one of the PMs accepts
the task, it would be queued in that PM’s queue. At last, the RiMdvisioning Module
(VMM) starts the instantiation and deployment of VMs forttkesk and the actual service
starts.

RAM processes the tasks in the global queue on a First-Int-Bus (FIFO) basis;
RAM first tries to provision the task on a PM machine in the hailptf the process is not
successful then RAM tries the warm pool and if there is no PMIavi in warm pool,
RAM tries the cold pool. If RAM cannot assign a PM to a task, itsgetjected. When a
running task is done, the assigned capacity will be reled§#tkere is no running task on a
PM for certain time, the Pool Management Module (PMM) movesRM to warm or cold
pool according to the pool policy and traffic condition. PMMresponsible for manage-
ment of pools during the operation of the cloud center. PMM&sahe PMs among the
pools depending on the load, according to two criteria: ,fashieving minimal response
time and blocking probability and second, in order to has kenergy consumption, idle
hot PMs should power down to either warm or cold mode aftaagerdle time.

To model the performance of an laaS cloud center, we havercoted a probabilistic
model that consists of three different submodels with oheset, and one instance each,

respectively. Our model closely follows the one presenhe@], but our emphasis is on

48 Chapter 3: Investigating The Behavior of laaS Cloud Datacente

/_\ A/ OE
, Lh @ =
“iﬁ ﬁ\ ?L
a, (1 P/)M ah(_Ph) a/(p,)
' =
A g
(: Gl
S
\K * A “|
o
]
g

Figure 3.2: CTMC of the Resource Allocation module (adaptemf@]).

energy-related issues in the context of a non-saturat&ideaid center.

Resource Allocation

Task requests arrive according to a Poisson process witlalarate ;. An incoming
request will be processed by the RAM, shown with the two-disi@mal Continuous Time
Markov chain (CTMC) in FiglZ3]2. RAM checks the hot, warm, anddcpbols (in that
order) to find whether there is a sufficient number of PMs af&lMs to accommodate
the requestj /oy, 1/, and1/a. are the mean look up delays in the respective pools. A
hot PM can immediately begin service of a request, providbds VMs to spare. If there
is no hot PM with the required capacity, a warm PM may be useidt bhust instantiate the
required number of VMs before provisioning the requesthédiré is no warm PM either, a
cold PM will be used, but must be switched on before insténgahe VMs. Obviously,

the delays for the three types of PMs will differ, with hot Ppteviding the shortest one.

Chapter 3: Investigating The Behavior of laaS Cloud Datacente 49

Once an idle VM is found, RAM will allocate the request. A regumay be rejected if
there is no space in the input queue, or a suitable PM cantidoed. The probability of the
former eventish,, = (L, h) +7(Ly, w)+m(Ly, c), wherer (i, j) denotes the probability

of pool 5 having: requests whild, is the capacity of the input queue; the probability of the
Lq

. A1 — P, . . e
latter isP,, = E %w(z, c). Total blocking probability is, therfy,, = Py, + P,
. (0% t
1=0

If we define the probability generating function (PGF) foe thumber of tasks in the
queuel[61] as

V(2) = 7(0,0) + > (m(i, h) + (i, w) + (i,)2, (3.1)

1=0
mean waiting time can be calculated using Little’s I [35] a
v

Wy = m, (3.2)

and mean look up time among pools can be obtai@d [33] as

= Mon + 0= (U] + 1= P1fe) 53

Virtual Machine Provisioning

The request then waits in the PM input queue until a VM is readprovision it.
Provisioning is described with a VMM modeled as another CTM@ws schematically
in Fig.[33. The complete analytical model employs threehsuodules with identical
structure corresponding to hot, warm, and cold pools, isdy.

Let ¢y, as the rate at which a VM can be provided on a PM in the hot podl]et ;. be

50 Chapter 3: Investigating The Behavior of laaS Cloud Datacente

Py @)
Pp () D (7

Figure@B.B: CTMC of the Virtual Machine Provisioning moduletioe hot pool (adapted
from [33]).

the service rate of each task. The arrival rates can be eddclibs

L M1-Ry)

h= —Nh
o M- ij\(;)(l - P 3.4
L M1=R,)1=P)(1-P)

c — Nc

for hot, warm, and cold pool, respectively, whe¥g, NV,,, and N, denote the number of
PMs in the respective pools?, = 1 — (P!)™= denotes the probability of a PM in the
hot pool accepting the task; the complementary probahitiy be calculated aB" =

> zen 7. In the last expressiom, = {(i, j, k)|i = L,} denotes a subset of VMM states in

which a task may be blocked.

By the same token, success probability for provisioning k tasvarm and cold pool

Chapter 3: Investigating The Behavior of laaS Cloud Datacente 51

Figure 3.4: CTMC of the Pool Management module (adapted f@m

is P, =1— (P2)NeandP, = 1 — (P¢,)"°, respectively.

Pool Management

Provisioning of requests may require that PMs are moved dmtwools under the
control of the PMM, modeled with a CTMC shown in Hig.13.4. Thenition from a warm
to hot PM occurs at a rate ¢fR,, = (\ Py (1 — P,) + (1/SU,))~*, wherel/SU,, is the
mean time required for a warm PM to switch to hot state. Siiyila cold PM can be
moved to the hot pool at a rate 61R. = (A Py, (1 — P,) + (1/SU.))~ !, wherel/SU, is
the mean time needed for a cold PM to switch to hot state.

Conversely, if, upon a task ends execution and the numberehiot PMs exceeds
a predefined threshold, an idle hot PM can be moved to the waohtp reduce energy
consumption, or even to the cold pool if the number of PMs etlarm pool is above the

predefined threshold, at a raf&’;.

52 Chapter 3: Investigating The Behavior of laaS Cloud Datacente

Integrated Model

The overall model, consists of three interactive stochastbmodels; this reduces com-
plexity of the model itself but also the computational coextly of solving the model. Itis,
then, solved via successive fixed point iteratm [44], shaw pseudocode in Algorithioh 1.
Algorithm ends when the difference between the values dbgdodities in successive iter-
ations drops below a predefined threshald=¢ 107°).

The interactions among sub-models are presented i Fig.\V3/bProvisioning Sub-
Model (VMSM) computes the mean success probabilities ¢, and P.) that at least
one PM in a pool (hot, warm and cold, respectively) can begassi to a task. Success
probabilities are used as input parameters to the Resouloeafibn Sub-Model (RASM).
The hot PM Sub-Model (VMSNhot) computes?, which is the input parameter for both
warm and cold sub-models. The warm PM submodel (VM&&rm) computes’,, which
is the input parameter for the cold sub-model (VM&#Id). Moreover, the hot PM model
provides P, and the probability by which a hot PM becomes idi¢) (for Pool Manage-
ment Sub-Model (PMSM). On the other hand, PMSM compWgsN,, and N, as input
for hot, warm and cold PM sub-models respectively. The RASkhmates the blocking
probability, F,,, which is the input parameter to VM provisioning sub-modais PMSM.

Task waiting time is obtained as the sum of four componendsting time in the global
input queue, until the processing by RAM; RAM processing tim@jting time in the
PM queue; lastly, the time for VM instantiation and deploymeTotal response time is

obtained by adding the waiting time to the duration of theialcservice time.

Chapter 3: Investigating The Behavior of laaS Cloud Datacente

53

VMSM_ cold

Figure 3.5: Interaction diagram among sub-models (addpbeal [@]).

Algorithm 1 Successive Substitution Method

Input: Initial success probabilities in pool$},q, Puo, Pro;
Input: Initial idle probability of a hot PMPy;
Output: Blocking probability in common input queué’,;
count<— 0; maximum<+— 30; A «— 1;
Pyyo <— RAM (Ph0, Pw0; Pc0);
[Ny, Ny, Ne| <— PMM (Py, Py)
while A > 1075 do
count<— count +1;
[Ph, Pz] +—— VMM _hot (quo, Nh),
P, «— VMM warm (P, P, Ny);
P. <— VMM _cold (Py, Py, Py, N.);
[Ny, Ny, N.| «— PMM (P, F;)
qul +—— RAM (Ph, Pw; PC),
A +— |(qu1 - quO)
Progo <— Bog1;
if count = maximunthen
break;
end if
end while
if count = maximunthen
return -1;
else
return Ppgo;
end if

54 Chapter 3: Investigating The Behavior of laaS Cloud Datacente

3.1.2 Performance

The analytical model has been solved using Maple 15 from &t Inc. EL].

To evaluate the performance of the pooled cloud system anddstigate the performance-
energy trade-off in more detail, we have solved the modetMiorscenarios. First, we kept
the task service time constant and varied task arrival eeond, we kept the task arrival
rate constant but varied task service time. In both casesiawe kept the total number of
PMs constant alv = 100 while varying the initial proportion of PMs allocated to féifent
pools:yN PMs in the hot and warm pools each, gnd- 2v) N PMs in the cold pool. In
addition, the number of PMs in the hot pool was kept at or abavewhile the other two
pools were allowed to change. Transition to the warm poolinéated when the number
of idle hot PMs exceeded 2, and the same threshold was us#eeforansition from warm
to cold pool.

Mean provisioning time for a task consists of the followirapgponents: mean waiting
time in the input queue, mean time for pool look-up (which whewn to have a Coxian
distribution Ej&]), mean waiting time in the queue of theoalited PM, and mean waiting
time for VM provisioning. To obtain the total service timegweed to add the actual time
of request execution.

In the performance evaluation process, we have assumethéservice time changes
in the range of 20 to 120 minutes based on the cloud userstriexipe. The task arrival
rate in a cloud datacenter can change during the differer@stiof day or night. In order

to capture the behavior of the system during different tinmeshe first scenario we have

varied task arrival rate in the range of 100 to 1200 tasks per.h

Chapter 3: Investigating The Behavior of laaS Cloud Datacente 55

Task Blocking Probability Task Blocking Probability Task Blocking Probability

(a) Blocking at service time 40 mir{b) Blocking at service time 40 min(c) Blocking at task arrival rate 400
task arrival rate variable from 10@sk arrival rate variable from 500er hour, mean service time vari-
to 600 per hour. to 1200 per hour). able from 20 to 120 minutes.

Total delay Total del Total delay
otal delay

807
66
704
64

60 120
110 62

509 100
90 60

40 30

58

30 0.8

0.2

04 033 03 04 7033 0s P 0403 03
0333 g0 2504 om0

(d) Total delay (seconds) at servi¢e) Total delay (seconds) at servi(® Total delay (seconds) at task ar-

time 40 min, task arrival rate variime 40 min, task arrival rate varival rate 400 per hour, mean ser-

able from 100 to 600 per hour. able from 500 to 1200 per hour. vice time variable from 20 to 120
minutes.

Figure 3.6: Task blocking probability and total delay.

Task Blocking and Total Task Delay

In Fig.[3.8, we analyze the effect of service time and task/arrate on blocking
probability and total delay for a task. To facilitate compan under different combination

of fixed and variable independent variables, we have plattedliagrams as functions of

At

10N:“tot
on a single PM is assumed to be 10. For clarity, we have diviiledange of offered loads

and offered load calculated as= , where the maximum number of VMs running

for the scenario with constant service time into two sullyes) the corresponding results

are shown in the diagrams in the leftmost and middle colunmifsg[3.8.

56 Chapter 3: Investigating The Behavior of laaS Cloud Datacente

Mean number of PMs in hot pool Mean number of PMs in warm pool

Standard deviation of the number of PMs in the hot pool

0.2 0.5 0»%

04 7B 0 P 02>y 05

(a) Mean number of PMs in the h¢it) Standard deviation of the nur(c) Mean number of PMs in the
pool. ber of PMs in the hot pool. warm pool.

Figure 3.7: Pertaining to steady-state partitioning of RMe pools. Mean service time
fixed at 40 minutes, task arrival rate variable from 500 toQL@ér hour).

As expected, both request blocking and total delay incredtbeload. Below the load
of p ~ 0.3 to 0.4, Figs[3.6a arld 3.6d, the cloud datacenter operat@ear regime with
low blocking and reasonably small delay.

Beyond this load, however, blocking rapidly increases asdbe delay. Figd. 3.6b
and[3.6k show the increase of delay which appears to be diautuanly because a large
number of task requests (over 10%) is rejected.

On the other hand, increasing the mean service time whiégiikg the task arrival rate
constant, shown in Figs._316c and 3.6f, results in an inereédslocking and delay which
are much smoother. Note, however, that the datacenter teparalinear regime, well
beyond the saturation limit, even though the value dbes increase above the threshold
identified in the other four diagrams.

We note that for the same offered load, the cloud center appede more sensitive to
the task arrival rate than to task service time, which is dubé overhead imposed by the
provisioning process which increases with the number dfstésit is independent of the

task service time.

Chapter 3: Investigating The Behavior of laaS Cloud Datacente 57

Pool Management

The observations above can be corroborated by calculdtiegteady-state number
of PMs in different pools. The number of PMs in both hot andmwanools, shown in
Figs.[3.7& and 3.7c, exhibit a steady increase which is appately linear function of the
offered load, in one dimension, and similarly a linear fumctof the parametet. (We
note that the distinction between variable arrival rate asadiable service time does not
apply here, since the overhead is incurteforethe actual provisioning of tasks.) As
can be seen, higher load leads to a shift in the partitionfrighds, from the initial ratio
defined byy, towards an ever increasing number of PMs in the hot and wawispand
the corresponding depletion of the cold pool.

However, the increase is far from being stationary, as wgad by the diagram of
standard deviation of the number of PMs in the hot pool in Bigh. As the offered load
increases, the standard deviation exhibits a rapid inef@asch means that the fluctuation
of the number of PMs increases, as many PMs are being moveditiyanm the hot (and
warm) pool in order to cater to the variable load.

At the same time, at low values of offered load, the mean nurobBMs in the warm
pool, Fig[3.7k, is noticeably lower than that in the hot p&ad).[3.7&. Only when the load
increases towards a rather high valueoof 0.8 do the two numbers begin to converge,
meaning that most PMs are either hot or warm, and only a hbedéu remains in the cold

pool.

58 Chapter 3: Investigating The Behavior of laaS Cloud Datacente

Energy consumption Energy consumption Energy consumption

120
110
100
90
80
70

035 53504

03
¥ 025

0.250- 03 0.
570.10.150277p 702505 0%

0.

(a) Energy consumption at servi¢b) Energy consumption at servige) Energy consumption at task ar-

time 40 min, task arrival rate variime 40 min, task arrival rate varival rate 400 per hour, mean ser-

able from 100 to 600 per hour. able from 500 to 1200 per hour. vice time variable from 20 to 120
minutes.

Figure 3.8: Energy consumption as function of offered load partitioning of PMs into
pools.

3.1.3 Energy Consumption

The fluctuation of the number of PMs in the three pools is regton energy con-
sumption of the cloud center. Let the power consumption atsPtM bed,, while that of
awarm PM bédl., (the power consumption of a PM in the cold pool is, obviousgro).
If we denote the mean time spent in each state of the CTMC foPM#I, Fig.[3.4, with

T,,, the total energy consumption is

E. =Y (Ny, + WoNy,)5,Ty (3.5)

seC

where(is the set of PMM states andl,, and NV,,, denote the number of PMs in hot and
warm pool, respectively, in stateof the PMM.

Our first experiment follows closely the scenarios outlimethe previous Section, with
the ratio of power consumption of a warm PM vs. that of a hotfores atiV,. = 0.5. (For

simplicity, we express all energy consumption values inadd@b the energy consumption of

Chapter 3: Investigating The Behavior of laaS Cloud Datacente 59

a hot PM with all 10 VMs instantiated.) The results are showfig.[3.8; as before, we
have split the range of observed values for the offered Inantder to highlight the differ-
ence between linear and saturation regimes. As can be besshdpe of surfaces obtained
under variable task request arrival rate, Higs.13.84 addl 8l8arly indicate the boundaries
of the linear regime in which the energy consumption is low aat very dependent on the
offered load. Of course, if the initial partitioning of PMi&gs preference to PMs in the hot
and warm pools, higher energy consumption will result.

However, as soon as the task arrival rate exceeds the value 0f3, energy consump-
tion begins to rise at a considerable rate, due to highergotiop of PMs being in the hot
pool, but also due to longer time spent in switching to andhftmt state. (We assume that
energy expenditure of a PM during switching is equal to tHad €@ully loaded hot PM.)
Energy consumption appears to flatten at high loads apevé.6, but only because most
of the PMs are in hot and warm pools most of the time, switclimly occasionally to the
cold state.

When the task arrival rate is constant, energy consumptibib#x a nearly linear de-
pendency on the mean task service time and the partitioruafjicient~, as can be seen
from Fig.[3.8¢. This behavior is similar to that observeditmrcking probability and total
task delay in Fig._316.

Our final experiment involved energy expenditure under @ondask request arrival
rate and mean service time (i.e., under constant offered),Idaut with variable power
consumption ratid¥, of a PM in the warm state vs. that of a PM in the hot state. The
resulting diagrams are shown in Fig.]3.9, where energy elper (relative to the energy

consumption of a single fully loaded PM) is nearly lineargpéndent on botk and V...

60 Chapter 3: Investigating The Behavior of laaS Cloud Datacente

Energy consumption Energy consumption Energy consumption

90
85
80
75
70
65

v 7 025 -
! 05 06 We

(a) Under mean arrival rate of 40®) Under mean arrival rate of 70@) Under mean arrival rate of 1000
tasks per hour. tasks per hour. tasks per hour.

Figure 3.9: Energy consumption as function of the ratio ofrmas.-hot PM power con-
sumption and partitioning of PMs into pools. Mean servioeetifixed at 40 minutes.

However, it is much more sensitive to the former than to thielaas the consequence of
the fact that the partitioning parameter imposes a lowentian the number of PMs in
the hot pool. Thus the energy expenditure will not drop ashmuicen reducing the load,
as in Fig[3.9a, since the minimum number of PMs in the hot ostill limited by the
value of the partitioning parameter This hints that partitioning into three pools may be
inefficient, and that better results with respect to eneysamption could be obtained
by simply having two pools, a hot and cold one, despite perémrce degradation possibly

incurred in this setup. This remains a promising directmmf@irther research.

3.2 Analyzing The Impact of Provisioning Overhead Time
in Cloud Computing Centers

In an laaS cloud, an incoming task service request undegmeasal processing steps
before being actually provisioned on a VM executing on aglesied PM|[33]. These

processing steps generally pertain to the search for abseiiRM that will provision the

Chapter 3: Investigating The Behavior of laaS Cloud Datacente 61

task; moving the task to the selected PM; and, finally, wgifor the instantiation of the
VM on which the task will execute. Admission control througisk rejection or blocking
is thus performed at two steps along the way: at the globaltigpeue and at the input
gueue of the selected PM.

To reduce energy expenditure incurred by PMs running idiés Bre often partitioned
into pools. For example, the model presentetm\ [32] dedls thiree pools, hot pool with
PMs that are always on and VMs already instantiated, warnh b PMs that are on
but without any instantiated VMs, and cold pool that corssigtPMs switched off. In this
setup, PMs are moved from cold to warm to hot state in ordeulfdl the incoming task
requests, and moved back to warm or cold pool when there escabacity in order to
reduce energy consumption. The performance of the cloutkcenthen evaluated using
the tools of probabilistic analysis and queueing theoryweleer, the emphasis was on the
performance in saturation region, which is not the preteoperational regime for cloud
providers as the achievable performance levels, esp. taskibg rate, is not very good;
moreover, the analysis in that paper does not consider ggergumption in detail.

An extension of that analysis is presented in Sedfioh 3. Irevties focus was on linear
and transitional regime, rather than on saturation regiAreinteresting finding was that
the aggregated metric of offered load, similar to the metsied to characterize networking
systems, is insufficient to characterize the behavior ofctbad system. This is caused
by the overhead incurred in processing the incoming taskeslg and admission control
activities, which are dependent on the task arrival ratenbtibn the task service time.

In this section, we consider a model in which partitioningsisvo pools: the hot pool

in which PMs are running with the maximum number of VMs insi@ed and ready to

62 Chapter 3: Investigating The Behavior of laaS Cloud Datacente

provision user requests, and the cold pool in which PMs areetioff. We assume that the
number of PMs in the hot pool does not fall below a predefineekstiold, which serves to
maintain the performance at an acceptable level. Our facagain on the linear and tran-
sitional operational regimes which are much more intemgstio cloud service providers,
rather than the saturation regime in which task blockinghea values that are unaccept-
ably high in practice. We evaluate the performance of thadkystem expressed as task
blocking rate and energy expenditure. Furthermore, weuat@lthe sensitivity of the en-
ergy expenditure on the partitioning threshold, as wellrashe mean look up time in the

hot and cold pools.

3.2.1 The Model of The Cloud System

An laaS cloud center consists of a number of PMs (serverslimgra number of VMs
each that fulfill task requests submitted by users. All t&sjuests are provisioned using a
customized disk imagEL?,]. For simplicity, we assume thatRMs are homogeneous as
are the VMs, and that pre-built images satisfy all servicpests. Also, we assume that
each task request can be provisioned on a single VM.

We implement functional sub-models and their interactitmnebtain an overall solu-
tion. First, we implement separate sub-models for diffeggnvisioning steps of a cloud
service. In the next step, we obtain the overall solutiontbyation over individual sub-
model solutions and deploying interaction among thesesabels (Fig[3.70). Our typical

cloud center has a number of PMs which will allocate resaito@erform tasks in the or-

der of their arrival.

Chapter 3: Investigating The Behavior of laaS Cloud Datacente 63

VMM _cold

Figure 3.10: Interaction diagram among sub-models.

Resource Allocation

An incoming task request is first received in the global inguéue, where it waits
processing by a resource allocation module. This modulesedrch the hot and cold pools
for the required resources, i.e., PMs with idle capacitguiéh a PM is found, the module
will allocate the task to it, possibly instructing the PM te switched on in the process;
otherwise, the task may be rejected in what is effectivedyfitist level of admission control.
The operation of the resource allocation module can be ibestwith a CTMC shown in
Fig.[3.11. Task request arrivals are modeled as a Poissoagswvith rate\;. Task requests
are lined up in the global finite queue with a maximum capadfity, to be processed. Each
state of the CTMC in Fid._3.11 is labeled @sj), wherei denotes the number of tasks in
the queue and presents the pool on which the current task is under pravisgp Index
h andc indicate hot and cold pool respectivell, and P. present success probabilities of
finding a PM that can accept the current task in the hot andpmtirespectivelyl /«;, and
1/a. are mean look up times for finding an adequate PM in hot andpmdtirespectively.
The resource allocation module also calculates the taskiolg probability, 2, which is

the input parameter for the modules described below.

64 Chapter 3: Investigating The Behavior of laaS Cloud Datacente

A

A A A
0,0 0,h g
R «)\ly P AN E

e a(-p) » ,(1-5) a,(1-F,

((2'(— }‘}_
A alep d NS 2
a(1-P) 0. A =
) I,c L,c z
<R

Figure 3.11: Resource allocation.

Virtual Machine Provisioning

If the task is allocated to one of the PMs, it is transferreth®input queue of the PM,
which effectively implements the second level of task adinis control. Once the task
reaches the head of the said queue, the required VM is inestieehtand the task is actually
provisioned, i.e., the actual service starts. The operasfovirtual machine provisioning
module managing the hot PM pool can be described with a CTM@shio Fig.[3.12.
Each state of Markov chain is labeled fyj) in which : denotes the number of tasks in
PM’s queue and is the number of VM that are already deployed on the RMis the
arrival rate to each PM in the hot pool and is in proportiol\fpand N,,. ¢y, is the rate
at which a VM can be deployed on a PM in hot pool gnds the service rate of each
VM.The total service rate for each PM is the product of numiferunning VMs by .
The maximum number of VMs on a PM is equalitoand in this model, it is set to 10.
The virtual machine provisioning module calculates thecess probabilitiesH, and P.)
that at least one PM in a given pool (hot and cold, respegiiven be assigned to a task.
Success probabilities are, then, used as input parameterefresource allocation module
and the other virtual machine provisioning module, as welfa the pool management

module described below. In addition, the hot PM model presithe probability by which

Chapter 3: Investigating The Behavior of laaS Cloud Datacente 65

P [

? 9

m-Du m-Qu
oo

Figure 3.12: Virtual machine provisioning in the hot pool.

a hot PM becomes idl€?;. An analogous CTMC, but with different transition rates, can
be drawn for the corresponding module managing the cold pool
Also, pool management module comput€s and V. as input for hot and cold PM

sub-models respectively.

Pool Management

As noted above, a cold PM is switched on and populated withreégeired number
of VMs when there is no capacity in the hot pool to satisfy usguests. Conversely, if
a hot PM is idle for a predefined time, it is switched off. Hoegewhe number of PMs
is never below a predefined threshold in order to maintaie@teble performance. The
management of PM pools is done by a separate module, thetiopeoh which can be
described by a two dimensional CTMC shown in Fig. B.13. Theesgsstarts from the
state(, j) which indicates that andj PMs are in the hot and cold pool, respectively. If
next search in the hot pool is successful (with probabilityPp), system will remain in

the starting state, otherwise one of the cold PMs will be ndawo the hot pool. This

66 Chapter 3: Investigating The Behavior of laaS Cloud Datacente

FR, FR. FR. FR,
o RP RP RP,’\) RP RP,

Figure 3.13: Pool management.

transition occurs with the rate éfR.. With higher demand of PMs, cold PMs can become
hot PMs gradually until all the PMs are hot. Also, due to the ttemand of resources, idle
hot PMs will be turned off gradually, but the number of hot Pé4sinot get less than/V.

The idle hot PM is moved to the cold pool by rate/oP,.

Solving the Integrated Model

Our overall model thus consists of three inter-connectechststic models which com-
pute the cloud performance parameters such as task blopkafgbility and energy con-
sumption. However, there is a cyclic inter-dependency ajrtbe modules, which can be
resolved using fixed point iterative methad|[44] through aified version of successive

substitution approach presented in Algorithim 2.

3.2.2 Performance Evaluation

The proposed model has been solved using MapIQS [26].
In our experiments, the total number of available PMs is ma@&med at a constant value

of N = 100. The threshold coefficieni determines the initial partitioning of the PMs

Chapter 3: Investigating The Behavior of laaS Cloud Datacente 67

Algorithm 2 Iterative Algorithm for Substitution
Input: Starting success probabilities in pool3;, P.;
Input: Starting idle probability of a hot PMP;g;
Output: First level of probability of blockingF,,;
count<— 0; maximum<+— 30; A «— 1;

Pyyo <— RAM (PhO, Pc0);
[Nh, No| <— PMM (Py, Py);
while A > 107% do
count<— count +1;
[Ph, R] +— VMM _hot (quo, Nh),
P. +— VMM _cold (Py, P, N.);
[Np, Ne] +— PMM (P, B);
Pyj1 <— RAM (P, P,);
A |(qu1 - qu0>|;
Pogo <— Bpgu;
if count = maximunthen
break;
end if
end while
if count = maximunthen
return -1,
else
return Ppgo;
end if

between hot and cold pools, withV PMs in the hot pool andl — +) N PMs in the cold
pool. As noted above, the number of PMs in the hot pool canrrdreg belowy N.

Due to space limitations, we do not show the actual equatiessribing the model, as
they closely follow the analysis presented in Secfioh Jitdad, we show just the results
obtained from the solution of the model.

The response time or total delay is the sum of four provisigriimes: waiting in the
global queue, processing in the resource allocation mod@ing time in the PM queue,
and VM instantiation and deployment, to which the actuaVvisertime should be added

]. We note that:

68 Chapter 3: Investigating The Behavior of laaS Cloud Datacente

Energy consumption

Energy consumption

(a) Energy consumption, mean look (b) Energy consumption, mean look
up time in the cold pool 12 seconds. up time in the cold pool 7.2 seconds.

Task Blocking Probability Task Blocking Probability

(c) Task blocking probability, mean (d) Task blocking probability, mean
look up time in the cold pool 12 sec- look up time in cold pool 7.2 seconds.
onds.

Figure 3.14: Performance of cloud datacenter at mean setivi@ 40 minutes, mean look
up time in the hot pool 18 seconds, task arrival rate varititbla 100 to 600 per hour.

e Mean waiting time in global queuev() is exponentially distributed with mean value

of task arrival rate [/ \,).

e Mean look up time between the pools) has a Coxian distribution with two steps

of look-up time between hot and cold p0[33].

e Mean waiting time in the input queue of the select PNMM,.;) is exponentially
distributed for each pool with mean values of arrival rdte\, and1/\. that are in

proportion tol /\;).

e Mean waiting time for VM provisioning;{) is exponentially distributed with mean

value of task arrival ratel(/ \,).

Chapter 3: Investigating The Behavior of laaS Cloud Datacente 69

Cloud System Behavior at Low Loads

In our first experiment, we have investigated the impact steay load and pool thresh-
old on energy consumption and task blocking, under the tiongi of low system load
(values ofp up to 0.4). Mean task service time is assumed to be constdftrainutes, so
that the adjustment of system load is achieved through thestagent of task arrival rate.
Task rejection probability is obtained from the model. Eyetonsumption is calculated
by considering the mean tin#&, spent in each state of the Markov chain in Fig. 8.13 and

power consumption, of a hot machine, as

E.=) Ny 6, Ty (3.6)

seg

where¢ is the set of states of the Markov chain from Fig. 3.13, whilg is the number of
PMs in hot pool in state. In this work,d, is assumed to be 1, as all PMs are assumed to be
homogeneous; the resulting values of energy expendituycb@manterpreted as ‘the mean
number of PMs that are on.” The resulting diagrams are shovig.[3.14.

As can be seen, energy consumption, shown in Figs.13.14a.a4M,3s approximately
linearly dependent on the pool threshold, as could be eggedHowever, it is initially
nearly independent of the system load, up about 0.2, but then increases rapidly. This
is caused by the fact that in the first part of the range of \walaep, the current number of
PMs in the hot pool suffices to service the incoming task retpueHowever, the increase
of the load in second part of the range of valuesganeans that more PMs are switched
on (i.e., moved into the hot pool), with the associated iasesin energy consumption.

At the same time, the blocking probability in Figs. 3114c &84d is comparatively

70

Chapter 3: Investigating The Behavior of laaS Cloud Datacente

Energy consumption

80
70
60

50
0.8

Y025 04

0.2

(a) Energy consumption, mean look
up time in the cold pool 6 seconds.

Task Blocking Probability

0.8

0.25 04

0.2
(c) Task blocking probability, mean
look up time in the cold pool 6 sec-
onds.

Energy consumption

80
70
60
50
0.8

0.25 04

0.2

(b) Energy consumption, mean look
up time in the cold pool 4.5 seconds.

Task Blocking Probability

(d) Task blocking probability, mean
look up time in cold pool 4.5 seconds.

Figure 3.15: Performance of cloud datacenter at mean setivie 40 minutes, mean look
up time in the hot pool 7.2 seconds, task arrival rate vagi&doim 500 to 1200 per hour.

low, well below 1% in the most part of the observed range, tdibes rise when the system

load increases. Also, blocking probability remains lowasgl as the pool threshold is kept

near the maximum value of = 0.4, but it does increase at lower valuesyofThe rationale

for such behavior is simple: when the pool threshold is loastiPMs are kept in the cold

pool (i.e., they are switched off), and they are brought ithohot pool only when there is

a need. However, this action incurs a certain overhead whiy cause some tasks to be

rejected. Keeping more PMs in the hot pool helps reduce th#eu of rejected tasks and

keeps the blocking probability low; since the mechanism o¥img the PMs between pools

is continuously adaptive to the instantaneous load, thee@se in blocking probability is

Chapter 3: Investigating The Behavior of laaS Cloud Datacente 71

gradual and does not exhibit a distinct threshold such aerieeobserved in the diagrams
of energy consumption.

We have also used two values for the mean look up time in theepomdl which corre-
spond to the mean look up rates of 300 (diagrams on the ledtb80 searches per hour
(diagrams on the right). The mean look up time in the hot paad Wept constant at 200
searches per hour. We note that faster search reduces bahelhgy consumption and the

task rejection probability, although the differences asesignificant in either case.

Cloud System Behavior at High Loads

We have repeated the first experiment but with the range ¢ésykads that is wider
and extends well into higher loads, up go= 0.8; the mean look up times have been
reduced in order to make the system more responsive. Asdydfte changes in system
load were accomplished by changing the mean task arrivalviaile the mean task service
time was kept constant. The results are shown in[Eig] 3.15.

As can be seen, the higher values of system load lead to @vabid increase in energy
consumption as well as in task blocking. As the task arriaéés are higher, a distinct
threshold may be observed in the diagrams for task blockinbability, Figs[3.15¢c and
[3.15¢. The corresponding thresholds in the diagrams faggr@nsumption can’t be seen
— in fact, they would be visible if the range of system loadsemvextended downward
towards values of < 0.2.

But in either case, higher system load leads to higher enengsumption and consid-
erably higher task rejection rate. The values seem to flaitéigh system loads, but only

because the system has effectively entered saturatioh,amMiéarge number of incoming

72

Chapter 3: Investigating The Behavior of laaS Cloud Datacente

Energy consumption

85
80
75

70

4.5 0.4

5
55
Mean look-up 6 65 7

time in cold pool

(a) Energy consumption as the func-
tion of mean look up rate in the cold
pool; mean look up rate in the hot
pool constant at 7.2 seconds.

Energy consumption

88
86
84
82
80
78

4
457F

55 5
Mean look-up = 6.5 7
time in hot pool

Energy consumption

4 45
555
Mean look-up ~* 6573 0.25 2y
time in hot pool

(b) Energy consumption as the func-
tion of mean look up rate in the hot
pool; mean look up rate in the cold
pool constant at 7.2 seconds.

4
545

& 55
7 6.5 Mean look-up

time in cold pool

(c) Energy consumption as the func-
tion of mean look up rates in the hot
and cold pools; pool threshold kept at

a constant value of = 0.4.

Figure 3.16: The impact of look up times on energy consumpthMean task arrival rate
1000 per hour, mean task service time 40 minutes.

tasks rejected (values are well over 10%). Operation inrlgsne is most likely unaccept-

able in practice and should be avoided.

As before, shorter mean look up times (i.e., faster seaygies a slight improvement

in performance. This has motivated us to conduct the exgerisndescribed in the next

Subsection.

Chapter 3: Investigating The Behavior of laaS Cloud Datacente 73

The Impact of Look up Times on Energy Consumption

Finally, we have investigated the impact of look up times pargy consumption; the
resulting diagrams are shown in Hig. 3.16. As can be seeerlaalues of the mean look up
time in the cold pool results in higher energy consumptiofictviis due to faster searches
and quicker bringing up of new PMs into the hot pool. The iaseeis somewhat higher
than in the case of corresponding mean look up time in the dok, pvhich is caused by
the additional overhead needed to turn on a cold PM. Therdiifee in impact between the

mean look up times in the cold and hot pools is confirmed in[Eif6¢.

3.3 Chapter Summary

In Section 3.l we have examined the behavior of an laaS clatal @énter in which
servers are partitioned into pools of hot, warm, and coldmmess. We have focused on the
operation in the linear regime, and we have shown that tinsitran to saturation is clearly
visible from the diagrams of task request blocking probgbil\Wwe have shown that the
manner in which servers are partitioned in the pools affdesperformance, sometimes
even more than the variations of offered load. We have alswslthat the task arrival rate
is more critical parameter affecting the performance ofdloeid data center than mean
task service time, due to the overhead generated in resallooation and provisioning.
We have also shown that the energy expenditure is highly rabpg on the manner in
which servers are partitioned into pools, and that redu@sgep consumption of servers
kept in the warm state does not result in commensurate sainrenergy.

Also, we have analyzed the effects of pool threshold and rfedaup time in hot and

74 Chapter 3: Investigating The Behavior of laaS Cloud Datacente

cold pools on the performance of an laaS cloud system where &®partitioned into a
hot and a cold pool in Sectidn 3.2. Our results confirm thasgstem should operate well
below saturation in order to provide acceptably low tasketpn probability and energy
consumption. Also, we have shown that the performance ig semsitive to the mean look
up time for the PMs in the cold pool.

A continuation to the work discussed in this chapter can bestigation of the perfor-
mance of the networked cloud system as well as of the systémmigration of live VMs

between servers (PMs).

Chapter 4

Task Admission Control for Cloud

Server Pools

This chapter provides a model for task admission control r&sdurce allocation in
the cloud infrastructure. In Section #.1, we have investigdhe operating regions of the
proposed cloud model and evaluated the performance ofmesaliocation in the proposed
model. In order to prevent the cloud system getting into titeration region, we have
presented two algorithms to control the admission of incgmasks. These algorithms are
based upon establishing thresholds for task arrival radet@sk blocking probability. Our
experiments indicate that these simple admission conlgalrithms can vastly improve
system performance.

In Sectio 4.2, we develop two task admission control athors which are based on
task filtering policy. First, we present a lightweight taskrassion control algorithm which
is appropriate for the cloud systems with smooth changeasif arrival rate. This algo-

rithm is based on long-term estimation of average utilmaand offered load. Second, we

75

76 Chapter 4: Task Admission Control for Cloud Server Pools

introduce a task admission algorithm which is efficient faghty dynamic systems and

is based on instantaneous utilization. The performanceeptoposed schemes is eval-
uated against varying intensities of offered load. Pertoroe evaluation of the proposed
schemes in Sectidn 4.2.2 confirms that both of them are aldegore that the system is
kept in the stable operating region.

In Sectior 4.2, we have also conducted experimental silbngto examine the short-
term variability of the system. We have also investigatesl @ffect of the size of tasks’
waiting queue and the filtering coefficient on the systemgraraince through the simula-
tion model. Our simulation results show that utilizing kargvaiting queue improves the
task blocking rate. Also, our observations confirm that ggivore aggressive scheme of
filtering coefficient in the lightweight algorithm decreagke task blocking rate and delay.

This chapter is organized as follows: Section 4.1 presemtsask admission control
solution which are based on establishing thresholds férdasval rate and task blocking
probability. Sectiol 412 describes the proposed admissioitrol mechanisms which are

based on task filtering policy. Sectibnl4.3 concludes thetena

4.1 Task Admission Control in Cloud Based on Thresh-
olds of Task Arrival Rate and Blocking Probability

In Chaptef B, we have introduced virtualization as an effedgchnique for maximiz-
ing the utilization of physical servers (hosts) in an laa&idldatacenter, with a number of
VMs running on a given host. Furthermore we have discussatcetiergy expenditure of

such servers can be minimized by pooling of hosts. In Se@ifinservers are partitioned

Chapter 4: Task Admission Control for Cloud Server Pools 77

Feedback to Server Selection Modul

server

&
2
23

\EEEEEEEEEAae ' hot
Incoming i E
{ Hre— FIFO -
tasks { Admission : FIFO Server t Queue » server
' Control yi! Queue Selection | ; —
: ' warm
dae i
i : FIFO '
Y : Queue
Task rejection Y
through Task blocking due to cold
admission control insufficient capacity

Figure 4.1: System model.

into a hot pool (always on and with VMs instantiated and retadsun), a warm pool (on
but without VMs instantiated), and a cold pool with hostsad off. Servers are, then,
moved from one pool to another as needed to fulfill user raquedo conserve energy.

In this setup, maintaining desired performance levels isapponconcern. In particu-
lar, accepting tasks when they arrive, only to reject theter lanight lead to performance
deterioration for tasks already taken into service and ta¢go damage the reputation of
the cloud service provider. Admission control is an effextinechanism to enforce those
performance levels and fulfill their respective SLAs witletssas required. In this section,
we propose a simple yet effective admission control medmatinat can be easily added to
an existing cloud center and investigate its performandkefinction of system load and

baseline partitioning of servers into pools.

78 Chapter 4: Task Admission Control for Cloud Server Pools

4.1.1 System Model and Its Performance
System Model

The system model of a cloud server pool with a number of sereehosts is shown
in Fig.[4.1. We assume that the system has a common input gdes& requests arrive
according to a Poisson process with arrival ratend they are served in the FIFO order.
Without loss of generality, we assume that all servers aredgeneous as are the VMSs;
furthermore, we assume that a single VM image can satisfg@qllests for a task.

To accommodate a request, the server selection moduleshiezkerver pools to find
whether there is a server with sufficient number of idle VMsieThot pool is checked
first; if a server with sufficient number of idle VMs is foundyet task can be serviced
immediately. Otherwise, the warm pool is checked; if a waenver is to be used, it must
first instantiate the required number of VMs which incurs saelay. Finally, the cold
pool is checked, but bringing a server from the cold pool &ttht one requires additional
delay for server start-up and VM instantiation. Either wdne request is routed to the
server FIFO queue where it awaits for the VM that will prowisit.

If there is no server with sufficient capability, the requeskbe rejected. Requests can
also be rejected if there is no space in the input queue.

Initial partitioning of availableN servers is performed as follows:N PMs are allo-
cated to the hot and warm pools each, and the remaifiing2~y) N PMs are allocated to
the cold pool. Servers are ‘upgraded’ (i.e., moved from d¢olevarm, or from warm to
hot pool) when requests need to be provisioned; they arerigoaded’ as soon as requests
finish service so that all VMs on a hot server become idle. Bpkae system performance

at an acceptable level, the number of hosts in the hot po@vsnreduced belowN; the

Chapter 4: Task Admission Control for Cloud Server Pools 79

0.02

0.015

0.01

0.005

0.2 035 " k%

(a) Blocking at service time 40 (b) Blocking at service time 40 (c) Blocking at task arrival rate
min, task arrival rate variable frommin, task arrival rate variable from400 per hour, mean service time
100 to 600 per hour. 500 to 1200 per hour). variable from 20 to 120 minutes.

160
80
140
75
120

70 100

65 80

025 o v 7025 7 O

(d) Total delay (seconds) at servicée) Total delay (seconds) at servicgf) Total delay (seconds) at task ar-

time 40 min, task arrival rate vari- time 40 min, task arrival rate vari-rival rate 400 per hour, mean ser-

able from 100 to 600 per hour. able from 500 to 1200 per hour). vice time variable from 20 to 120
minutes.

Figure 4.2: Task blocking probability and total delay.

other two pools are allowed to change as needed.

Performance of The Original Pooled System

To investigate the performance of the pooled cloud systeserdeed above we have
built a discrete event simulator using MATLAB R2013a with tBenulink component

]. Simulink is a block diagram environment for multi-dam simulation and model-
based design. It supports system-level design, simulaéioiomatic code generation and
continuous test and verification of embedded systems. 8iknptovides a graphical edi-

tor, customizable block libraries and solvers for modeting simulating dynamic systems.

80 Chapter 4: Task Admission Control for Cloud Server Pools

Moreover, it enables the designers to incorporate MATLAGoathms into models and
export simulation results to MATLAB for further analysis. ggeding the nature of ser-
vice/resource provisioning in cloud computing datacenterd also our analytical model
which has been developed based upon the queuing systemsguiesd an efficient tool
which could support discrete-event simulation (DES) appho According to the model’s
requirements and Simulink’s features, we found it a sugabhulator.

The results are shown in Fig._4.2. The diagrams in the top fmwsblocking proba-

bility as the function of the partitioning coefficient (i.elefault proportion of hot servers)

~ and system loag = m.NAMot, assuming the distribution of service times is exponential
diagrams in the bottom row show total delay under the samditions. First two diagrams
in each row are obtained by varying the task arrival rate uodastant service time; the
rightmost diagram is obtained by varying the task serviceetunder constant task arrival
rate. For clarity, we have separated the range of offeredslodao two sub-ranges: one from
p = 0.1to 0.5, shown in the diagrams in the leftmost column, andlerdtompy = 0.4 to
0.8, shown in the diagrams in the middle column; both cowaddgo mean service time of
40 minutes. The diagrams in the rightmost column were obthimder task arrival rate of
400 tasks per hour.

As can be seen, task blocking rate decreases+yithhich could be expected. When
the task arrival rate increases, task blocking also inesal the lower half of the range
of load values, Fid. 4.2a, this increase begins to show avdues ofy and higher values
of p. However, when we look at the upper range of load values[Z&RD, we see that the

system actually enters saturation when task blocking hapndreases beyond = 0.5.

The increase in blocking is more gradual when task arrivid i® constant while mean

Chapter 4: Task Admission Control for Cloud Server Pools 81

service time increases, but the overall increase is quetgpstrom around 0.02 (i.e., 2% of
rejected tasks) to above 0.15 (i.e., 15%); again, this cbeldxpected.

Saturation is also evident on the diagrams that show tosk teelay, especially in
Fig.[4.2¢é, even though the delay is only about twice of theimam value in the lower
part of the range, Fig._ 4.2d. Saturation is more noticeabtee diagram of delay obtained
under constant task arrival rate and variable service Fagel4.27.

Obviously, if we want to keep the cloud center out of satorgtin other words if we
need to keep the delay and rejection rate low, some kind ofssiom control is desirable.
By rejecting task arrivals that stand little to no chance afpeserviced immediately, cloud

service provider will improve the quality of service for teeisting customers.

4.1.2 Simple Admission Control Mechanisms

The aim of applying admission control schemes to the poolagament system is to
keep the cloud system in the linear operation region withbtmeking and reasonably small
delay. We have seen that the partitioning coefficteatfects blocking, and we can use this
feature to improve performance. Therefore, admissionrobntechanism executes in two

steps.

1. Inthefirsttier, it adjusts the partitioning coefficiestarding to the mean task arrival
rate. When the task arrival rate increases, the partitionogfficient is increased
to soften the impact of increased load, and vice versa. Asadas/als are random
events, fluctuations of the task arrival rate are smoothedyusing an exponentially

weighted moving average.

2. As the second tier of adjustment, if the probability of thgk being rejected by the

82 Chapter 4: Task Admission Control for Cloud Server Pools

Y a Y a
0.5 0.5
Y1 1 Y2
4 _,yl
Yo Yo
0 } } } } } } »> 0 } } } } } } >
)Ll 7\-)\4 7\,2 X
(a) Changes of according to Algorithni13. (b) Changes of according to Algorithni 4.

Figure 4.3: Dynamics of changing efaccording to admission control algorithms.

server selection module exceeds a predefined threghgidthe task is rejected out-
right. Again, the rejection probability is smoothed out &mexponentially weighted

moving average.

In this manner, admission control filters out tasks so thattrobthe rejected ones are
rejected outright, whereas only a small predefined pergerdgéthem are rejected only after
being processed by the server selection module, which td@itional time. This helps to
maintain the rejection rate of the admitted tasks low. Farrtiore, the elimination process
of the admission control module can be used in a different teagnprove performance,
i.e., to redirect superfluous task requests to another dencer center instead; however,

the elaboration of this approach is beyond the scope of #sept work.

Performance of Admission Control

To investigated the performance of the admission contrelhave defined two algo-
rithms. The first one uses two distinct values of the partitig coefficient, the default
valuey, and the high-load value;, as shown in Figi_4.3a; it is shown as Algoritfiin 3

below. The second one uses a ‘softer’ changeover with thmeees for the partitioning

Chapter 4: Task Admission Control for Cloud Server Pools 83

coefficient: the default valug,, the mid-range value,, and the high range valug, as

shown in Fig[4.3b; it is shown as Algorithimh 4 below.

Algorithm 3 Admission control mechanism 1.
Set\ +— Ao
while true do
With each task arrival, recalculate
if A\ > \; then
Sety «— v,
else
Sety «— 7o;
end if
With each task rejection, recalculalfy;,
if Py < % < Pyo then
Drop most recently arrived task with the ratecot= f(\);
else if Py, > Pyro then
Drop most recently arrived task;
end if
end while

The resulting blocking probability under the two algorithim shown in Figl_4]4, with
initial partitioning coefficient and system load as indegemt variables. (Load is varied
by varying the task arrival rate.) For Algorithinh 3, the threlsls were\; = 300 tasks
per hour,vy, = 0.2, andy; = 0.4. In the blocking probability range aPy;; t0 Pyko,
dropping rate ¢) is a function of\ which means that by increasing of mean task arrival
rate, dropping rate is going to increase as well. In definingve have been remotely
motivated by packet dropping rate in Random Early DetectiREBl) mechanism used in
TCP congestion controﬂS]. For Algorithd 4, the thresholdsre \; = 300 tasks per
hour, A\, = 400 tasks per houry, = 0.2, v; = 0.3 andvy, = 0.4. Mean service time was
kept at 40 minutes. As can be seen, both algorithms, togefitiepool management of the

proposed approach, manage to maintain the overall blogkiolgability within reasonably

low range. Interestingly enough, the ‘softer’ adjustmemvied by Algorithm4 is less

84 Chapter 4: Task Admission Control for Cloud Server Pools

0.02- 0.02
0.015 00151
0.01- 0017
0.005 0.005 -

0 04 0- 0.4

04 035 g3 5o o P 04 03553 55 02 p

& 2025 0.1 Y1 2> 025 0.1
(a) According to Algorithni B. (b) According to Algorithni%.

Figure 4.4: Task blocking probability with admission carhtr

successful in keeping the overall blocking probability Ithvan the ‘*harder’ one provided

by Algorithm[3.

Algorithm 4 Admission control mechanism 2.
Set) «—)\
while true do
With each task arrival, recalculate
if A >)\, then
Sety «— a;
else
if A > \; then
Sety «— m;
else
Sety «— 7o;
end if
end if
With each task rejection, recalculafy;,
if % > Puko then
Drop most recently arrived task;
end if
end while

As further validation of the efficiency of Algorithid 3, we haplotted the task block-
ing rate of the system without admission control, with thektarrival rate periodically

increased from 100 to 700 tasks per hour after every 250 dacdnhean task service time

Chapter 4: Task Admission Control for Cloud Server Pools 85

was fixed at 40 minutes. As can be seen from the timing diagndfigi[4.5b, task blocking
rate is steadily increasing with each increment of the tased rate. However, when ad-
mission control according to Algorithid 3 is applied, taskdiing rate is kept reasonably
constant, as shown in Fig._4l5c. The initial increase is duthé smoothing algorithm,
which takes some time after the change in task arrival raseljast the mean task arrival
rate as well as the mean blocking rate. Mean delay that taglesience is also kept rea-
sonably constant, as shown in Hig. 4.5d, with the same calmatt transitory regime as
above. In fact, the delay even decreases slightly, whicluéstd the fact that some tasks
are not admitted in the first place, and therefore do not affecperformance.

In another test case which its results have been presenkégl.id.6, we have increased
the task arrival rate from 100 to 700 tasks per hour and thehave decreased the rate
to 100 tasks per hour periodically after every 250 secondgariMservice time was set
to 40 minutes. It can be seen that in Hig. #.6c, using Algorithis improving the task
blocking rate. Moreover, Figs._4J6d aind 4.6e present thegdsof task rejection rate and
~ respectively; these are the controlling parameters in étlgm [3 and when task arrival
rate increases, task rejection rate anaill increase as well to reduce the task blocking
rate. On the other hand, with decreasing of task arrivalnegeatedly;y will be reduced

to its minimum value and task rejection rate will get to zero.

86

Chapter 4: Task Admission Control for Cloud Server Pools

Task Blocking Rate Arrival rate (task/hour)

Task Blecking Rate

Delay (s)

700
600
500

SN W os
FR=-B=-8-]
S S S5 O

Time (s)
(a) Task arrival rate changes during the test time.

0 200
A=100 tih

=03

400

(b) Task blocking rate without admission control.

600

800
Time (s)

1000

1200

1400

4 I
1600
A=T00 t'h

0 200
A=100 tih

400

600

800
Time (s)

1000

I
1200

1400

1600
A=T00 t'h

(c) Task blocking rate with admission control (Algorithin 3)

120 T
1001
80
60
40
20§

A=100t'h

0 A
0 200

400

600

800

1000

1200

I
1400

1600
A=T00 t'h

Time (s)

(d) Total delay with admission control (Algorithioh 3).

Figure 4.5: Test case of task arrival rate variable from DODOO per hour, service time 40

min.

Chapter 4: Task Admission Control for Cloud Server Pools 87

2 700
2 600
£ 500
@ 400
T 300
T 200
€ 100§

Time (s)

(a) Task arrival rate changes during the test time.

a-mé

IS o @
T T T

Task Blocking Rate

ha
T

=]

0 500 1000 1500 2000 2500 3000
Time (s) ,
A=100 t'h A=TOO th A=100 th

(b) Task blocking rate without admission control.

= [#1] o
T =T T
1

Task Blocking Rate

L]
T

L]

0 500 1000 1500 2000 2500 3000
Time (s
A=100 th A=m:,(,._,-h) A=100 th

(c) Task blocking rate with admission control (Algorithin 3)

Figure 4.6: Test case of task arrival rate variable from D000 per hour and down to 100
per hour, service time 40 min.

88 Chapter 4: Task Admission Control for Cloud Server Pools

01 T T T T T T
0.08f : : : .
0.06 - : : : .

0.04f : : >

lask Hejection Hate

o2t - B . -

4]

0 500 1000 1500 . 2000 2500 3000
Time (s)
A=100th A=TOO th A=100 th

(d) Task rejection rate with admission control (Algorithin 3

05 T T T T T T
04t : - - - -
03f .

0.2 I i S L_

Gamma

0 1 1 1 1 1 1

0 500 1000 1500 2000 2500 3000
Time (s)

A=100 th A=TO0 th A=100 th

(e) v change with admission control (AlgoritHoh 3).

Figure 4.6: Test case of task arrival rate variable from D000 per hour and down to 100
per hour, service time 40 min.

In another test case presented in Figl 4.7, we have increélseddsk arrival rate from
100 to 1200 tasks per hour and in a similar case in[Fig. 4.8, ave increased the task
arrival rate from 100 to 1000 tasks per hour periodicallgiaivery 250 seconds and mean
service time has been fixed to 40 minutes in both figures. #tdst case, we have applied
Algorithm[3 to control the admission of arriving tasks andivesre ignored the task block-
ing threshold ofP,;;, to get into the higher rates of incoming tasks and examineatsie
blocking rate. The task rejection rate is increased acngrth the increasing of incom-
ing task rate. As can be seen, in Hig. 4.7a, task blockingisdiss than the case of not
using any admission control mechanism (ffig. ¥#.2a). Fumibeg, when task arrival rate
increases in the ranges of 500 to 1200 tasks per hour[(Fif),4a6k blocking rate will

get into the saturation regime in higher rates of task droeanpared to Fig._4.2b which

Chapter 4: Task Admission Control for Cloud Server Pools 89

E 0.25 1

0.018 1]
0.016 0.2
0.014 -]
0.012 4 0.15
0.014]
0.008 1 0.1
0.006 1]
0.004 4 0.05]

0.002 M Ood 0708
04 035 0.2 rho © 035 0506

ga%?na 0.25 0.2 gaR‘l?na 0.25 0204

(a) Blocking at service time 40 min, task arrival (b) Blocking at service time 40 min, task arrival
rate variable from 100 to 600 per hour. rate variable from 500 to 1200 per hour).

Figure 4.7: Task blocking probability with admission cahiAlgorithm[3 without consid-
ering task blocking threshold d#,.).

no admission control has been applied. In the timing diagranfrigs[4.8b and 4.8e, task
blocking rate and total delay are increasing respectivetis ®ach increment of the task
arrival rate. When Algorithral3 is applied to model, task blogkrate and delay have been
reduced as shown in Fidgs. 41.8c and ¥.8f. According to[Fig 4s88the incoming task rate
increases, the applied admission control mechanism vaitemse the task rejection rate to

keep the total delay and task blocking below the threshold.

90

Chapter 4: Task Admission Control for Cloud Server Pools

Arrival rate (task/hour)

Task Blocking Rate

Task Blocking Rate

1000
900
800
700
600
500
400
300
200
100 {
Time (s)
(a) Task arrival rate changes during the test time.
0.3}
0.2t
01f
0 g e 1 ! a
0 500 1000 1500 2000 250C
A=100 t'h Time (s) A=1000 th
(b) Task blocking rate without admission control.
T T T T
0.3 :
0.2t f@ .
01 f Mo —
0 .
] 500 1000 1500 2000 2500
A=100 th Time (s) A=1000 th

(c) Task blocking rate with admission control (Algoritith 3thwout considering
task blocking threshold aP,;).

Figure 4.8: Test case of task arrival rate variable from 10DQ00 per hour, service time

40 min.

Chapter 4: Task Admission Control for Cloud Server Pools 91

02

01F : : '-r\r
0 i n

0 500 1000 1500 2000

A=100 t'h Time (s A=1000 th

(d) Task rejection rate with admission control (Algorithiw@hout considering
task blocking threshold aP,;).

Task Rejection Rate

150
100

50 JM-

500 1000 1500 2000 :
A=100t'h Time (S:l A=1000 t'h

Delay (s)

(e) Total delay without admission control.

Delay (s)

500) 1000) 1500 2000
Time (=)

(f) Total delay with admission control (Algorithij 3).

250C
A=1000 th

A=100t'h

Figure 4.8: Test case of task arrival rate variable from 10DQ00 per hour, service time
40 min.

4.2 Task Filtering as a Task Admission Control Policy in

Cloud Server Pools

In a cloud server pool, resources are comprised of VMs wihrehiaployed on PMs. In
this work, every task is served with a single VM. A cloud sep@ol cannot serve unlimited

number of tasks simultaneously. The decision whether tatadservice request or reject it

92 Chapter 4: Task Admission Control for Cloud Server Pools

is not trivial. However, with utilizing appropriate admiss control and resource allocation
mechanisms, it is possible to improve the usage of resoarwbprovide a satisfactory level
of utilization.

In this section we propose a dynamic controlling algoritlordévise task admission
policies. First, we have implemented a lightweight task esgiman control algorithm which
is based on the measurements of utilization and offered I8adond, we have developed
the analytical model of the scheme as a queueing model andrdrated its performance.
Third, we have presented an alternative task admissiorrigdgofor the cloud systems
which experience abrupt changes in their task arrival raéesally, we have analyzed the
short-term variability of the system through simulationdab Also, we have examined the
effect of the size of tasks’ waiting queue on the system perdmce in our simulations. We
have also utilized a different calculation scheme for fittgrcoefficient in the lightweight
task admission control algorithm which is more aggressiveatd rejecting the incoming
tasks. We have evaluated the effect of the different filgeigoefficients on the system

performance.

4.2.1 Admission Control Policy

Cloud providers need to have clear policies for task admissomtrol and they should
deploy robust task admission mechanisms to have a tradeetffeen SLA requirements
and cloud system'’s resources. Admission control policieslafined according to different
requirements in a cloud system and users’ expectations.

In the current work, we have assumed that at the beginningsmiurce allocation pro-

cess all of the users’ incoming requests can get into theespool and they will be provi-

Chapter 4: Task Admission Control for Cloud Server Pools 93

sioned in the resource allocation process. With utilizingappropriate resource allocation
mechanism, resources which in this case are VMs, will begassi to the tasks. The
system’s performance is monitored continuously. Duririg fitocess, admission control
mechanism can reject some of the incoming tasks accorditigeteystem’s requirements,
e.g., when a utilization threshold is defined as a goal or veh@efinite proportion of VMs

are assigned to the tasks; the target threshold is definaddiag to the system'’s require-

ments and it is not limited to the mentioned goals.

Controlling Parameters and Related Policies

In this work, we aim to keep the system in the stable operagggn of the utilization
threshold,U;,,.. In order to achieve this goal, we have utilized two coningllparameters
in the cloud system.

Fig.[4.9 illustrates the proposed task admission and resoalfocation scheme in a
server pool. Also, it depicts the overview of task admissiontrolling parameters. Us-
ing filtering coefficient results in selective task acceptanlhe system’s current resource
availability is given as a feedback to the admission contrethanism. The resource allo-
cation mechanism has been developed as three interadaieastic sub-models including
Resource Assigning Module, Pool Management Module and VMiBiaming Module; the
overall solution is obtained by iteration over individuabsmodel solutions. The details of
resource allocation mechanism and related provisioninggsses are presented in details
in Sectio 3.1L.

Filtering policy can be defined according to the prefererafethe operator; for ex-

ample, cloud management system can set a lower positioreaslithission threshold and

94 Chapter 4: Task Admission Control for Cloud Server Pools

Resource Allocation, Server Pool
Management & VM Provisioning

Task FIFO queue
request
arrvals /5 gmission
R >
control
—Jl’
Task rejection Task blocking due .
L <«—busy—><«—idle—>
due to filtering to full queue

\ J

Y
current utilization

Task acceptance rate = ‘
1,.if current_utilization_< threshold;

filtering coefficient * task arrival rate, otherwise

Threshold T

Figure 4.9: The task admission control and resource almtacheme in a cloud server
pool.

chose a larger filtering coefficient (i.e., lower task droyprate) or it can select a higher
position threshold with a lower filtering coefficient (i.digher task dropping rate). In
the former approach, system starts to drop the tasks euwiliera lower rate; whereas in
the latter approach, system will start task dropping ldiet,with the higher rates. Cloud
management system can select the appropriate policy asgdodthe users’ preference or

system requirements.

Task Admission Scheme Based on Offered Load

Admission control mechanism used in this work is presentefligorithm[3. In this
algorithm, whenever a task arrives in the system or depans it, some parameters will
be re-calculated. First, average offered loag) is calculated using the current task ar-
rival rate. We have used Exponentially Weighted Moving Aags (EWMA) techniqueﬂ?]

to smoothen the effect of sudden changes on the systemis computed using EWMA

Chapter 4: Task Admission Control for Cloud Server Pools 95

smoothing factor ¢), the previous average offered load,(,) and the system’s current
offered load f.) Estimated average utilization:(,) is calculated according to EWMA
smoothing factor §), the previous estimated average utilizatiaf), () and the cloud sys-
tem’s current utilization«,). In case of task arrival, i, is less than the utilization
threshold Uy, the system accepts the incoming task; otherwise, themystéculates the
filtering coefficient asl.; = 1 — (pa, — pwnr) @nd it will reject the incoming task with
the probability ofl — F;. The offered load thresholg,,, is set to 0.75. The utilization

threshold [/, is set to 0.75.

Algorithm 5 Admission mechanism based on offered load.
Upon task departure:
Re-calculate,,, us andu,;
Upon task arrival:
Re-calculate,, aspa, «— a - p. + (1 — &) pavp;
Estimate new average utilization/() as
Uy e Bt + (1= Bt
if u!, > U, then
CalculateF, s <— 1 — (pay — pthr);
Reject the incoming task with the probability of
1—Fep;
else
Accept the incoming task;
end if

Algorithm[3 is appropriate for systems which experiencelbsteps of change in task
arrival rate. It is easy to determireand 3 in these systems as the systems’ behavior is
predictable. For the systems with unexpected arrival thgecomputation of parameters
is more complicated and in Sectibn 4]2.1, we have proposgdriéthm[6 to maintain task

admission control in those systems.

96 Chapter 4: Task Admission Control for Cloud Server Pools

A A A 7\,1 }\-R-T-l }\'R—T
p 2u Tp (T+Dp (R-Dp Ru

Figure 4.10: Markov chain model admission control.

Analytical Model of Admission Control

Admission control scheme can be modeled as a birth-deattepsowhich is a spe-
cial case of CTMC. The task admission scheme can be analyzegl thd Markov chain
depicted in Fig_4.10. In this setup,andR represent the thresholds of full rate task accep-
tance and full rate task rejection, respectively. Namehgmthe mean blocking probability
of the system is below the first threshold, admission comttokpts all incoming tasks. As
the result,T" is the last state where all of the arrived tasks will be adrdittBeyond this
threshold, admission control begins to drop some of thenmieg tasks.R is the full rejec-
tion threshold state beyond which all incoming tasks willregcted and it is also known
as the capacity of the system or the number of VMs in the model.

Transition rates of going from statdo statei + 1 (i.e., that the task is accepted by the
admission control) are calculated in Equafion 4.2 and tlee@ted rate of incoming tasks,

Ar, can be set as

(

A state; = 0..7T

Af=4q F.-\ statei=T+1.R (4.1)

0 statei > R
\

Chapter 4: Task Admission Control for Cloud Server Pools 97

where) is the task arrival rate anfl,; is filtering coefficient calculated aB.; = 1 —
(pi — Uyr). Offered load in the staté presented ag; and utilization thresholdly,,.,
determine the value of filtering coefficient. The state plolitees of the Markov model

can be calculated as

1 /A" 1
<_> L ogck<r

K \u) DD
P, = k=T 4.2
i=1
— T<k<R
M DD - NS
where
=T
T 1)\ %)\ T R H)\z
pD=Y = (Z z =1 4.3
;i! (u) +(u) TZH@'! pi=T (*:3)

andy is the mean service rate. The average utilization of theeayst,,,, and the blocking

probability of " threshold,P,;;., is given by

R
1
oy = > kP, (4.4)
k=0
R
Poy = Z Py (4.5)
k=T+1

We have obtained the value of threshd@ldusing two different methods. In the first
method, we have solved the system of equation$ (4.L) tb4écbrding to given utilization
threshold,U,,,.. In the second method, we have applied exhaustive searamndtoptimal
value ofT" threshold which renders minimal difference between edénhatilization and

utilization threshold{/,,..

98 Chapter 4: Task Admission Control for Cloud Server Pools

Task Admission Scheme Based on Current Utilization

Algorithm 6 Admission mechanism based on current utilization.
flgo <—0;
Upon task arrival:
Consider the current utilization including the
pending taski.);
if u., > Uy, then
if |u, —u),.,| > My, Or flg, = 0then
for T, = Uy, - Rto R do
Adopt the instantaneous utilization . equation from the system of equa-
tions (4.1) to[(4.14);
Apply T; threshold tau,. to obtainuc;;
CalculateF'¢; according tauc;;
Calculatey; «— |uc; — U, l;
end for
Find the minimumy;;
Select the correspondirig and F'¢; as the
optimal values off’ and F.; respectively;
flgo <— 1,
else
Use the previou§’ as the current’;
Apply T" threshold ta, and calculate
according tau,;
end if
Reject the incoming task with the probability of
1— Fcf;
else
Accept the incoming task;
end if

Task admission mechanism presented in Algorithm 5 is effidia the cloud systems
which go through smooth changes of incoming task rate. Hewanw the systems where
change of arrival rate is highly dynamic, smoothing facterand 3, and Algorithm[5
does not predict the filtering coefficient with sufficient aaxcy. Therefore, we propose
an alternative algorithm which is better for handling thetsyns with abrupt changes of

arrival rate. In this solution, system applies exhaustearsh to find admission arrival rate

Chapter 4: Task Admission Control for Cloud Server Pools 99

which is derived by the closest value of instantaneousatibn to the utilization threshold,
U,n- In this iterative mechanism, system traékg, as closely as possible. This solution
is inspired by the Delta Modulation technique used in Pulsgeddodulation (PCM)L[60].
Algorithm[@ demonstrates this approach. When a task arffssed load) is calculated
using the current task arrival rate. Also, the currentzaiiion including the pending task,
ul, is calculated. ifu, is less than the utilization threshold;,,., the system accepts the
incoming task. Otherwise, if the difference betwegérand the previous utilization before
considering!’ thresholdyy,,..,, is more than a threshold margi,,,, or if itis the first time
occurrence of utilization more thdn,,,., the system examines the threshold rangépf- R

to R. In this case, the typicdl; (the threshold position of full rate task acceptance) well b
replaced in current utilization.() equation, adopted from the system of equatiéng (4.1) to
(4.4). It then calculates the filtering coefficiert;) corresponding td@;. Then,uc; will be
computed using the values df'¢;) andT;. Also, the difference between; andUy,.., ¢;, is
calculated. The minimum value 6f represents the closest value of utilizatioriig, and
the correspondin@; andF'c; will be chosen as targét and F..; values respectively. also, if
the difference betweemn, andu,,., is less than\/;;,, margin, system will use the previous
T as the current” and after applying thi§’ to «., F.; can be calculated. The system will

reject the incoming task with the probability of- F.;. The utilization threshold)/;;, is

set to 0.75.

4.2.2 Performance Evaluation

To investigate the behavior of the admission control madelhave evaluated different

Af
m-N-ptot

performance parameters under varying levels of offered, lgacalculated ag =

100 Chapter 4: Task Admission Control for Cloud Server Pools

In our experiments)N = 100 is the number of PMs anah = 10 is the maximum number
of VMs on each PM,; therefore, the system’s capacity(80 VMs. We have kept the
task service time constant and varied the task arrival caéehieve the offered load in the
range of 0.4 to 0.95. In order to investigate the effect of mszvice time varieties on the
performance metrics separate from the effects of offerad &nd task arrival rate changes,
we have examined four service times of 20, 40, 60 and 80 nsnfgteeach parameter.
The utilization thresholdl/;;,, is set to 75%; in this range of valug,,,, is relatively high
and the system is in normal condition, not yet in the satonadiperational region in which
significant number of tasks will get blocked due to the exwedsaffic load. We have used
Maple 15 to develop this modlj%].

Fig.[4.11 shows the accepted rate of incoming tasks. It casebe that while offered
load is under 0.75, with increasing of arrival rate, acceéptde increases as well. When
offered load goes beyond 0.75, accepted rate of incomirks tascomes flat to keep the
average utilization in the defined threshold. Also, in orttehave the same ranges of
offered load in Fig.[4.31, with increasing of constant seevime, the accepted rate of

incoming tasks moves to the lower ranges (from maximum vafue64 tasks per second

or 2300 tasks per hour to 0.16 tasks per second or 570 taske®pgr

Performance Evaluation of Algorithm

In this section, we investigate the performance of task asiiom scheme that uses Al-
gorithm[5.
Fig.[4.12 presents the threshold positions according tagihg offered load for four

constant service times. As can be seen in[Fig.]4.12, samedffead can result in same

Chapter 4: Task Admission Control for Cloud Server Pools 101

] o 0O 0O D0 0O o
4 o
0.6 1 .
] =
g u}
O.Si o
] u}
b u}
] o
0.4 o
o
{" + + + +
] L
0.3 -
] L
02i .t B o © o 0 ©°©
+ ~ O [e] -
] o © 7 QQQOOOOQ
Oliv o © <> o © o < <&
Al o ©
,‘Q :

04 05 06 07 08 009
rho

++++++ 40 mins
oooooao 20mins
oooooo 80 mins
occcoo 60 mins

Figure 4.11: Accepted rate of incoming tasks at constamicsetime and variable task
arrival rate.

threshold position. Also, with increasing of offered loadroother word, increasing of in-
coming task, threshold position moves to higher number os\iMorder to keep the aver-
age utilization around 75%. Boxes represent the obtaineghiotds according to Equation
4.4 and crosses are the obtained thresholds of the exhagstrch method discussed in
Sectior4.Z11. As can be seen, the outcomes of two method$ maite well.

Fig.[4.13 illustrates the blocking probability of admissimontrol process. In Fig. 4.113,
when offered load is below 0.75, the blocking probabilityaafmission control process
is negligible, but when offered load goes beyond 0.75, tlhekahg probability increases
when the offered load increases. This is because the sysigeiting full and it is blocking
more tasks to maintain the desired level of utilization.oA\lis can be seen that in different
service times, the same offered load results in almost sdookibg probability, despite

the slight discrepancies which arise from rounding ernothié computations.

102

Chapter 4: Task Admission Control for Cloud Server Pools

1000
980 -
960
940 -
920
900
880 -
860
840 -
820,

B B B B B B B B B B

0.4

0.7 0.8 0.9
rho

0.5 0.6

Figure 4.12: Threshold position at constant service tinf€&0p 40, 60 and 80 mins and
variable task arrival rate using AlgoritHnh 5.

60 mins

Figure 4.13: Blocking probability at constant service tinmel aiariable task arrival rate

using Algorithm®.

Fig.[4.14 shows the utilization of the admission controlesnk. This figure presents

the outcome of applying the

obtained threshold to the syst@mexpected, in all cases

with choosing appropriate threshold position, utilizatie not degrading and with offered

loads higher than 0.75, utilization gets into the stabledateyn of utilization threshold,

U Therefore, our goal of keeping the utilization around acefpethreshold is achieved.

Chapter 4: Task Admission Control for Cloud Server Pools 103

75? 5 o o o oo
70%
65%
60% o
55%
50% o

45

400 ‘ ‘ ‘ ‘ ‘
0.4 0.5 0.6 0.7 0.8 0.9
rho

Figure 4.14: Utilization at constant service times of 20, @@ and 80 mins and variable
task arrival rate using Algorithid 5.

In Fig.[4.1%, the value of filtering coefficient in four casesstbeen presented. As
expected, in the same ranges of offered load, these coafBa@ee identical; this is because
in Algorithm[3, filtering coefficient is calculated as a fuioct of offered load and therefore,
same offered load gives same filtering coefficient. Also licases, when offered load is
less than 0.75, the system does not filter the incoming tasksyhen offered load is getting
higher than 0.75, system drops some of the arriving tasksth Wcreasing of offered
load, dropping rate of arriving tasks increases linearlgdmpensate the target utilization
threshold. In the worst case pf= 95%, system only accepts 82% of the incoming tasks.

Fig.[4.16 illustrates the total delay in four cases. Thel éday includes the total re-
source provisioning time in a server pool and it is obtaingddswarding the accepted
incoming tasks to the pool management scheme presented.id.Bi The details of pro-
visioning time calculation has been described in Se¢fidh As can be seen in Fig._4]16,
higher service time generally results in higher delay, batadmission control scheme pre-

vents the system to experience dramatic changes in toty del it keeps the total delay

104 Chapter 4: Task Admission Control for Cloud Server Pools

{0 o o © © © © ©§ O © o
0.98 1 N
0.96
0.94
0.92 1 o
0.9
0.88 1 N
0.86
0.84
0.82*‘ ‘ ‘ ‘ ‘ ..

0.4 0.5 0.6 0.7 0.8 0.9

rho

Figure 4.15: Filtering coefficient at constant service 8¢ 20, 40, 60 and 80 mins and
variable task arrival rate using AlgoritHnh 5.

200 > ©
oo o o o oo o oo o 00O

B e T T
150

b boooooooooooooose B
100

50+

04 05 06 07 08 09
rho

Figure 4.16: Total delay at constant service times of 20,600and 80 mins and variable
task arrival rate using Algorithid 5. Legends are same asethenids in Fid. 4.11.

in an almost steady range.

Performance Evaluation of Algorithm

The performance of task admission scheme that uses Alguolitis presented in this
section. It can be seen that the performance of Algorithmv@iig close to Algorithni 5.

In Fig.[4.17, when offered load goes beyond 0.75, threshokitipn approximately

Chapter 4: Task Admission Control for Cloud Server Pools 105

10008 & & & @ @ @ © © @ o
9801
960 -
940+
920*; .

900 1 .

880 1 °

860

840 o d

] S

820 B

1 T T T T o T T

0.4 0.5 0.6 0.7 0.8 0.9

rho

040

Figure 4.17: Threshold position at constant service tinfeéé0p 40, 60 and 80 mins and
variable task arrival rate using Algorithoh 6. Legends araesas the legends in Fig. 4]11.

changes in the range of 805 to 915 VMs to keep the averageatitiin around 75%, similar
to Fig.[4.12; although, in this case, threshold positioroisn through exhaustive search.
As can be seen, similar to F[g. 4112, same offered load ginesepts almost same threshold
position and the slight differences are the result of rongdirrors in the calculations.

The blocking probability of the alternative solution is shin Fig.[4.18. The blocking
probability of this solution is slightly higher than the blang probability presented in
Fig.[4.13; however, the range and pattern of changes of iggkobabilities are close.
In the case of offered load larger than 75%, the system isngefiill and it is blocking
more tasks to maintain the desired level of utilization.oAlls can be seen that in different
service times, the same offered load results in almost sdookibg probability, despite
the slight discrepancies which come from rounding errotbéncalculations.

The system’s utilization in Fig_4.19 matches the utilizatpresented in Fig-4.14; al-
though, in Fig4.19, utilization is slightly changing oveetdifferent offered loads.

The pattern and the range of changes of filtering coefficierfig.[4.20 are similar

to the pattern and ranges of changes illustrated in[Fig} 4ltbough, in Fig[4.20, the

106 Chapter 4: Task Admission Control for Cloud Server Pools

60 mins

Figure 4.18: Blocking probability at constant service tinmel arariable task arrival rate
using Algorithni®.

75 @ & 8 5 @ ©
1 @

704 ®

65

60 o

55+

50 ®

45

40 ‘ ‘ ‘ ‘ ‘
0.4 0.5 0.6 0.7 0.8 0.9
rho

1@

Figure 4.19: Utilization at constant service times of 20, @@ and 80 mins and variable
task arrival rate using Algorithid 6. Legends are same asethenids in Fid. 4.11.

filtering coefficient is decreasing slightly faster. Alsbetslight discrepancies of filtering
coefficients in FigiZ4.20 are the result of rounding errorthincomputations and the same
offered load presents almost same filtering coefficient.

Also, the system'’s delay shown in Fig. 4.21 matches the ¢ty in Fig[4.156.

Chapter 4: Task Admission Control for Cloud Server Pools 107

Figure 4.20: Filtering coefficient at constant service tand variable task arrival rate using
Algorithm([8.

] <
200*<><><><><><><><>QQQQQQQQ

PR
o4+
+++++++++++

lSOEDDDDDDDDDDDDDDDDD
100

501

04 05 06 07 0.8 0.9
rho

Figure 4.21: Total delay at constant service times of 20,600and 80 mins and variable
task arrival rate using Algorithid 6. Legends are same asetjenids in Fid. 4.11.

Analyzing the Effect of The Size of Waiting Queue and FilteringCoefficient on System

Performance

In this subsection, we analyze the effect of changing theaiZEIFO waiting queue and

filtering coefficient in Algorithnib on the system. In the rlisypresented in Sectidn 4.2.2

108 Chapter 4: Task Admission Control for Cloud Server Pools

and4.2.2, we have assumed that the size of waiting queués equal to 50. Also, filtering
coefficient, ., in Algorithm[3 is calculated a$,; = 1 — (pa — pur). We have built a
discrete event simulator using MATLAB R2013a with the Simklbomponent@?] to

analyze the effect of changing parameters.

Simulation Experiments Using Short Waiting Queue Figs[4.22 anf4.23 illustrate the
simulation snapshots whdhy is equal to 50 and in the case of applying Algorithh¥s;

is calculated a$.r = 1 — (pay — pPrnr)-

As can be seen in Figs. 4.22a dand 4122b, when task arrivaisréss than 1100 tasks
per hour or in other words, offered load is less than 0.7%esysadmits all arriving tasks;
whereas, when offered load goes beyond 0.75, system stgtding some tasks and fil-
tering coefficient decreases. According to task blockiriggaresented in Figs. 4.22¢ and
[4.22d, using Algorithrm]5 results in almdgt% decreasing of the task blocking probability.

Also, comparison of Figé. 4.2Pe ahd 4]22f shows that usimgpéthm[3 improves the

total delay.

Chapter 4: Task Admission Control for Cloud Server Pools 109

§ 1600
£ 1500
% 1400
& 1300
~ 1200
% 1100
= 1000
®© 900
é 800
< 700 |
Time (s)
(a) Task arrival rate changes during the test time.

1.1
€
[}
o 1 4
=
g r r—-—
% 0.9 —
£ r)
o L I r |
= 0.8

1
0 500 1000 1500 2000 250C
Time (s)
(b) Filtering coefficient with admission control (Algoriti{5).
) 0.6
ol
o
g 0.4}
:0)
S 02k
8
% 500 1000 ‘ 1500) 2000) 250¢

Time (s)

(c) Task blocking probability without admission control.

Figure 4.22: Test case dfq = 50, task arrival rate variable from 700 to 1600 per hour,
service time 40 minF.; = 1 — (pay — Ptir)-

110 Chapter 4: Task Admission Control for Cloud Server Pools

o
o
T

o
IS
T

o
N
T

Task Blocking Rate

M\’

500 1000 1500 2000 250C
Time (s)

o
o

(d) Task blocking probability with admission control (Algdm[5).

Total Delay (s)

0 500 1000 1500 2000 250C
Time (s)

(e) Total delay without admission control.

BN
a o ua
o O O

Total Delay (s)
=
o
o

a
o
i

500 1000 1500 2000 250C
Time (s)

(f) Total delay with admission control (Algorithid 5).

o

Figure 4.22: Test case dfq = 50, task arrival rate variable from 700 to 1600 per hour,
service time 40 minF,.; = 1 — (pay — Pihr)-

Fig.[4.23 illustrates the snapshots of performance paemieihen Algorithm6 is used
and no task admission control is applied. In [Eig. 4123b, lsimo Fig.[4.22b, when offered
load goes beyond 0.75, filtering coefficient decreasespadth, in the case of using Al-
gorithm[®, the dropping rate is slightly higher. Also, aating to the task blocking rate
presented in Fid. 4.28d, using AlgoritHth 6 improves the talsicking rate; though, the
blocking rate improvement is not as high as the case of AlgmiB. This is due to the

heavy load of computation in Algorithi 6.

Chapter 4: Task Admission Control for Cloud Server Pools 111

3 1600
£ 1500
5 1400
& 1300
o 1200
"(-“' 1100
= 1000
T 900
E 800
< 700 |
Time (s)
(a) Task arrival rate changes during the test time.

1.1
z
S 1 8
=
g
O 09 . _
j=2}
£
S osf , MM; b e
[T

1
0 500 1000 1500 2000 250C
Time (s)
(b) Filtering coefficient with admission control (Algorithg).
o 0.6
ol
o
Zoar
§
S o2
[%]
8
% 500 1000 1500) 2000) 250¢
Time (s)

(c) Task blocking probability without admission control.

Figure 4.23: Test case dfq = 50, task arrival rate variable from 700 to 1600 per hour,
service time 40 min.

112 Chapter 4: Task Admission Control for Cloud Server Pools

Task Blocking Rate
o
iy
T
é 1

021 Wr\v(\v |
0 500 1000 1500 2060 250C
Time (s)

(d) Task blocking probability with admission control (Algim[G).

Total Delay (s)
PR NN
o (o o ul
o o o o

3]
o
i

0 500 1000 1500 2000 250C
Time (s)

(e) Total delay without admission control.

2NN
a o u
o O O

Total Delay (s)
=
o
o

a
o
i

0 500 1000 1500 2000 250C
Time (s)

(f) Total delay with admission control (Algorithi 6).

Figure 4.23: Test case dfq = 50, task arrival rate variable from 700 to 1600 per hour,
service time 40 min.
Simulation Experiments Using Large Waiting Queue Figs.[4.2% an@ 4.25 present the
simulation snapshots whéry is equal to 200 and in the case of applying AlgorifinF5;
is calculated a$.; = 1 — (pay — Pihr)-

If we compare the Figé._4.24c ahd 4.P2c, we can see that ewhowviusing any ad-
mission control mechanism, increasing the size of waitingug has a significant positive
effect on task blocking rate; this is because more tasks aayance to stay in the larger

waiting queue and they do not get rejected. As shown il Eigidt.using Algorithni b also

improves the task blocking rate. However, Figs. 4.24d apdiidndicate that using a larger

waiting queue causes higher delay in the system; althougjhg WIgorithm[% still results

Chapter 4: Task Admission Control for Cloud Server Pools 113

§ 1600
£ 1500
5 1400
& 1300
7 1200
(0]
'a‘ 1100
=~ 1000
© 900
é 800
< 700
Time (s)
(a) Task arrival rate changes during the test time.
11
£
8 1 4
=
8 I‘
O o9t r~— .
& o8l] r N |
208
Il
0 500 1000 1500 2000 250¢
Time (s)

(b) Filtering coefficient with admission control (Algoriti{5).

0.6 T =
)
T
o
g’ 0.4 : B
X
[}
o
o
~ 0.2 M«
[%}
©
=
0 . . .
0 500 1000 1500 2000 250C

Time (s)

(c) Task blocking probability without admission control.

Figure 4.24: Test case dfq = 200, task arrival rate variable from 700 to 1600 per hour,
service time 40 minF.; = 1 — (pay — Ptir)-

in lower delay.

114 Chapter 4: Task Admission Control for Cloud Server Pools

Task Blocking Rate

0 500 1000 1500 2000 250C
Time (s)

(d) Task blocking probability with admission control (Alginm[5).

N W

a o

o O
T

Total Delay (s)
B

au o u

o O o
i ‘

N

o

o
T

i

0 500 1000 1500 2000 250C
Time (s)

(e) Total delay without admission control.

NN W

o ua o

o O O
T T

Total Delay (s)
B e

au o u

o O O
; ‘

o

1000 1500 2000 250C
Time (s)

(f) Total delay with admission control (Algorithid 5).

o
al
o
o

Figure 4.24: Test case dfq = 200, task arrival rate variable from 700 to 1600 per hour,
service time 40 minF,.; = 1 — (pay — Pihr)-

Similar to the case of Algorithin 5, using AlgoritHrh 6 and ieasing the size of waiting
gueue has a positive effect on task blocking rate (Fig.4.26d Algorithn[6 improves the
total delay (Fig[[4.25f compared to Fig. 4.25e); though, asec of using Algorithni 6,
delay is slightly higher than case of AlgoritHth 5. Also, tlaeder waiting queuel(y =
200) results in the higher delay than short waiting quelie & 50). This is because of

experiencing longer waiting times in larger queues.

Chapter 4: Task Admission Control for Cloud Server Pools 115

3 1600
£ 1500
5 1400
& 1300
~ 1200
% 1100
~ 1000
T 900
E 800
< 700 |
Time (s)
(a) Task arrival rate changes during the test time.

11
5
s 1 4
=
8
O o9 : i
[=)
£ F‘\/ "W;, ,--w o~
£ o8 : g B
[T

1
0 500 1000 1500 2000 250¢
Time (s)
(b) Filtering coefficient with admission control (Algorithg).

0.6 T 3
o
ol
@
204 v E
3
; 0.2}
8

% 500 1000 1500 2000) 250¢
Time (s)

(c) Task blocking probability without admission control.

Figure 4.25: Test case dfq = 200, task arrival rate variable from 700 to 1600 per hour,
service time 40 min.

116 Chapter 4: Task Admission Control for Cloud Server Pools

o
o
T

|

o
~
T

1

o
N
T

Task Blocking Rate

500 1000 1500 2000 250C

Time (s)

(d) Task blocking probability with admission control (Aldginm][g).

o
o

i

0 500 1000 1500 2000 250C
Time (s)

Total Delay (s)
B

au o u

o O o
i ‘

(e) Total delay without admission control.

o

0 500 1000 1500 2000 250C
Time (s)

Total Delay (s)
B e

au o u

o O O
; ‘

(f) Total delay with admission control (Algorithid 6).

Figure 4.25: Test case dfq = 200, task arrival rate variable from 700 to 1600 per hour,
service time 40 min.

In order to achieve higher system performance in Algorithrwv® have used a more

aggressive calculation scheme for filtering coefficient.this case F.; is calculated as

F.f =1 — ((pav — pnr)/penr)- the results presented in Figs. 4.P6d Bnd 4.26f demonstrate
that using this aggressive calculation scheme for filtedogfficient decreases the task
blocking rate and total delay compared to its counterpae paesented in Figs. 4.24d and
[4.241. Hence, this new calculation schemefpy results in further improvement of system

performance.

Chapter 4: Task Admission Control for Cloud Server Pools

117

3 1600
£ 1500
5 1400
& 1300
o 1200
*(-“' 1100
~ 1000
© 900
E 800
< 700 |
Time (s)
(a) Task arrival rate changes during the test time.

1.1
=
3 1 .
= .
T If‘] .
O 09 r N
2 08* r—— |
"oz * e

0 500 1000 1500 2000 250C
Time (s)
(b) Filtering coefficient with admission control (Algoriti{3).

0.6F T !
2
©
@
g’ 04r- . -
3
; 0.2+
8

0 . .

0 500 1000 1500 2060
Time (s)

(c) Task blocking probability without admission control.

250C

Figure 4.26: Test case dfy = 200, task arrival rate variable from 700 to 1600 per hour,

service time 40 minF.; = 1 — ((pay — Penr)/ Peir)-

118 Chapter 4: Task Admission Control for Cloud Server Pools

Task Blocking Rate

0 500 1000 1500 2000 250C
Time (s)

(d) Task blocking probability with admission control (Alginm[5).

250

i

0 500 1000 1500 2000 250C
Time (s)

Total Delay (s)
B

au o u

o O o
i ‘

(e) Total delay without admission control.

- f

500) 1000) 1500 ‘ 2000 ‘ 250¢
Time (s)

w
o
o

N

o

o
T

|

Total Delay (s)

[
o
o

o
o

(f) Total delay with admission control (Algorithid 5).

Figure 4.26: Test case dfq = 200, task arrival rate variable from 700 to 1600 per hour,
service time 40 minF; = 1 — ((paw — Pthr)/ Phr)-

4.3 Chapter Summary

In Sectior{4.11, we have examined the behavior of a cloud centfferent operating
through our simulation model. Also, two algorithms for tagkival admission control are
presented to keep the cloud system in the non-saturatioratipg area. These admission
control algorithms execute in two steps: first step is adjgsthe partitioning coefficient
according to the mean task arrival rate; the second tieacking the task blocking proba-
bility in the system and adjusting the task acceptance aterding to the predefined task

blocking probability thresholds. Our simulation resultsirm that the proposed admis-

Chapter 4: Task Admission Control for Cloud Server Pools 119

sion control algorithms enhance system performance. Hewedjustments provided by
Algorithm [3 appeared to be more successful in keeping theativdocking probability
low than the adjustments provided by Algoritfiin 4. Althougte cost of this success is
dropping some of the incoming tasks in the linear to tramsitperating regions in Algo-
rithm[3.

The two proposed task admission algorithms presented itioBé€.2 are aimed to
keep the system in the stable operating region defined bygbaeator. We have utilized
two controlling parameters, full rate task acceptancestiol and filtering coefficient, to
deploy task admission policies. The first task admissionrélyn is lightweight, more
conservative in making decisions and suitable for the clystems which are relatively
stable in their task arrival rate; whereas, the second igihgois appropriate for the systems
with the wide ranges of change in arrival rate and it is momagiccated.

The evaluation of our model shows that in different rangemodming task rate and
mean service time, the average offered load will result endimilar average performance
in the cloud system. Also, our numerical results confirm ti@h of the task admission
mechanisms provide the cloud system’s stability.

We have also analyzed the effect of the size of tasks’ wagurge using experimental
simulation. We have observed that increasing the size dingagueue reduces the task
blocking probability; although, it causes higher delay twexperiencing longer waiting
times in larger queues. Also, we have observed that using raggressive scheme of
filtering coefficient in the lightweight algorithm improvése task blocking rate and delay.

A continuation to the work presented in this chapter can biengp placement of filtered

tasks in a networked cloud system.

Chapter 5

Prioritization of Overflow Tasks to

Improve Performance of Mobile Cloud

When the required computational resources exceed the ditipalmf a mobile device,
the application may be offloaded to a cloud and executed intaavimachine running on
a host. In many cases, this application forks new tasks wigighire virtual machines of
their own that need to be provisioned on the same physicahima@s was the original
application. Achieving satisfactory performance levesuth a scenario requires flexible
resource allocation mechanisms in the cloud datacentethisnchapter we present two
such mechanisms which use prioritization: one in whichddrtasks are given full priority
over newly arrived ones, and another in which a thresholdsiabdéished to control the
priority. We analyze the performance of both mechanismsguaiMarkovian multiserver
gueueing system with two priority levels to model the reseuallocation process, and
a multi-dimensional Markov system based on a Birth-Deathuging system with finite

population, to model virtual machine provisioning. We haxamined the performance of

120

Chapter 5: Prioritization of Overflow Tasks to Improve Perfance of Mobile Cloudl21

the proposed system in Section]5.3 and found that the thiceslased priority scheme not
only performs better, but can also be tuned to achieve thesdigserformance level.

This chapter is organized as follows: in Secfion 5.1, wepthiice our resource alloca-
tion mechanism in mobile cloud computing. Secfion 5.2 dbssrthe proposed resource
allocation solution for mobile cloud computing. Sectiofl Biscusses the performance of

our system and the related outcomes. Se¢tion 5.4 summérnizgehapter.

5.1 Introduction

Mobile applications such as face recognition, natural legg processing, interactive
gaming, and augmented reality are demanding intensive gtatipn and high energy con-
sumption. However, mobile devices have limited computatesources and limited battery
life. The tension between resource-hungry applicatiortsrasource-constrained mobile
devices hence poses a significant challenge for future enphatform development. Mo-
bile cloud computing, where mobile devices can offload sooraputational jobs to the
cloud is envisioned as a promising approach to address stitallangel[11].

The characteristics of mobile devices and wireless netwmakes the implementation
of mobile cloud computing more complicated than statioraoyds. Offloading requests
from a mobile device usually require quick response, mayfrequent, and are subject to
variable network connectivity, whereas cloud resourcearimelatively long setup times,

s

Also, the volume of workload which is going to be offloadedas predefined or known

are leased for long time quanta, and are not too sensitivettwank connectivity

for a mobile device when it starts the offload process. Treaguossibility that the mobile

device offloads a large burst of tasks toward the clouds oray starcely offload any

122 Chapter 5: Prioritization of Overflow Tasks to Improve Perf@ance of Mobile Cloud

application to the cloud; from this definition we can con@ublat the mobile device has a
stochastic behavior during the offload process.

In this work, we address the elasticity in mobile cloud cotimquand the heterogeneity
issues between cloud and mobile devices. We have develogelditeon which allocates
resources for on-demand job requests in the mobile cloufffoa@ed jobs are placed in
PMs in mobile cloud. However, these jobs can fork new taskishivmay not find sufficient
resources in home PM. In that case, they need to be returmeddarce allocation module
in order to be assigned the resources they need; we call thelse"“overflow tasks”. The
proposed solution manages these two types of tasks as tegeslaf services with differ-
ent levels of priority. We have utilized Markovian multigser queueing system with two
priority levels. In our solution, each type of task has itsresponding distinctive queue.
Also, this solution prioritizes serving the overflow task&othe new incoming tasks as we
assume the overflow tasks generally have a shorter dealéinghie new arrivals. Also, we
have followed two approaches of priority differentiatidn.the first approach, we assume
that the overflow tasks have full priority and the new arsvaill not get service unless
there is no overflow task left in the queue. In the second ambronve consider a threshold
for the number of waiting overflow tasks. Below this threshelach type of task has access
to the resources based on its corresponding probabilithelhumber of waiting overflow
tasks gets larger than the predefined threshold, the faltipris given to the overflow tasks
and new arriving tasks should wait until the number of waitiverflow tasks becomes less
than the threshold.

Dynamic side of offloaded jobs and existence of overflow tasiks burden on resource

management system. Major issue is how to assign prioritiidddsks in order to satisfy

Chapter 5: Prioritization of Overflow Tasks to Improve Perfance of Mobile CloudL23

bounds on job completion times. In this work, we considet bofuinds on completion
times and relative priority between the tasks. Note thatigmwork, “job” is referred to the
mobile device’s application offloaded toward cloud and iynmelude one or more “tasks”.
In this work, based on the characteristic of service demahdsobile devices, we as-
sume that the size of a job can vary during its service timebAnitially has a single task,
however, it may generate new tasks during its service tinme. Service times of the tasks
are independent and identically distributed and each &eglkires a VM for its execution.
Hence, the number of tasks in a job during its service timébela random variable. A
job is completed when all the tasks belonging to that job detegheir service. In order to
develop our VM provisioning scheme, we have proposed a nredirding the dynamic
behavior of the mobile requests which is based on integrationulti-dimensional Markov
system and Birth-Death queueing systems with finite popundfi/ /M / L/ / L) inspired by
the Birth-Death queueing systems develope [35]. Howetrere is a possibility that
mobile jobs offload a large burst of tasks toward cloud satvEe task provisioning would
be impossible without limiting the size of offloaded job, jthe maximum number of tasks
that it can contain. Also, since the cloud has finite numb&hd$ and every PM has a finite
operational capacity (e.g., the number of CPUs and memorgoiigp and assuming that
single task gets a VM (VMs are homogenous with respect todbeurces), there is a limit
on maximum number of jobs that a PM can host. With these lioita, we have prevented
the mobile devices to take the resources extensively amdidette the performance of the

cloud and the quality of service presented to cloud usefadigy the mobile users.

124 Chapter 5: Prioritization of Overflow Tasks to Improve Perf@ance of Mobile Cloud

Job requests from (. R
the mobile users primary
tasks thsk

blocking
A

thsk
rejection
A

secondary tasks

Virtual Machine
L Provisioning
- Resource Allocation Module (RAM) = Module (VMM)

Cloud Data Center

Figure 5.1: The overview of system model.

€ Ly-----mmmmmmmmmmmmmee e > —>©

Figure 5.2: The service order in the queue when full priastgiven to overflow tasks.

5.2 Resource Allocation Solution

Fig.[5.1 depicts the overview of our solution. When the offexthsk reaches the dat-
acenter, RAM looks into the PM pool to find idle resources. ffisient VMs are available
at that moment, they will be assigned to the task. Otherwisetask should wait for the
VMs to become available. Once the task gets to the head oligneeg RAM will look into

the server pool to assign appropriate VMs. Our system alsdheability to control the

Chapter 5: Prioritization of Overflow Tasks to Improve Perfance of Mobile CloudL.25

T —— - RO

(b) After threshold:N,, > 7.

Figure 5.3: The service order in the queue when threshadédariority is given to over-
flow tasks.

overflow tasks in the PM, i.e., if the PMs cannot host the asigasks, they will be re-
turned to RAM to get another chance to obtain required ressuithe RAM gives higher
priority to overflow task than the new incoming tasks. Howetleere is a possibility that
a task is rejected because of insufficient resources insiti.aAnother possibility is that
RAM gets full and as the result, arriving tasks into this medygt blocked.

The order which the tasks get service is based on the priscitgme adopted in the
gueueing system shown in F[g. b.1. We have assumed that gaelot task (new arrival
and overflow) have a dedicated queue and the size of each qédye If the queues
are full, they cannot accept new tasks; therefore, thess tagl get blocked. We have

considered two priority scheme, full priority of overflowsts and the threshold-based

126 Chapter 5: Prioritization of Overflow Tasks to Improve Perf@ance of Mobile Cloud

priority of overflow tasks. If full priority is given to oveidw tasks, the overflow tasks
waiting in queue will get service in FCFS order before the negoming tasks as shown
in Fig.[5.2. Once there is no overflow task left in queue, the meoming tasks will be
served in FCFS order. If threshold-based priority is givemverflow tasks, as long as
the number of overflow tasks in queue is less than a threshld< 7,.) as illustrated in
Fig.[5.34, overflow tasks and new incoming tasks get sendgcerding to the probabilities
of P, and Py respectively; this approach is similar to Weighted Fair @aieg (WFQ)
method presented in_[16]. If the number of overflow tasks ieuguis larger than the
threshold (V,, > T,), the full priority is given to overflow tasks and they get\gee in
FCFS order as presented in Hig. 3.3b. Once the number of oveidkks becomes less
than the threshold, new arriving tasks get the chance tesadhe resources and both type

of tasks get weighted priorities.

5.2.1 The Queueing Model of Resource Allocation

We have assumed that task requests arrive according to soRgsocess with arrival
rate \. An incoming request will be processed in the RAM which is medes a multi-
dimensional CTMC presented in Fi§s.]5.4 5.5. RAM check&sepol to find whether
there is a sufficient number of idle VMs on a PM to accommodegeyerequestl/j is the
mean look up time to find appropriate PM in the server pool.

In this model, we have developed two types of tasks; the fips ts the overflow tasks
which can be generated in PMs because of resource short&isnThe overflow tasks
will return to RAM to get service. The second type of tasks érbw task arrivals into the

system which includes the majority of the tasks. We haveitided the overflow tasks over

Chapter 5: Prioritization of Overflow Tasks to Improve Perfance of Mobile CloudL27

new arrivals because of the deadline of the tasks alreadypsat into the system. Priority
is a useful scheduling method that allows different custatyyges to receive differentiated
performance levels.

The first type of tasks which are the overflow tasks have a mearptive strict priority
over the new incoming tasks.

We have followed two different approaches in defining thenty scheme. In the
first approach, full priority is given to the overflow tasksdan the second approach, the

overflow tasks have threshold-based priority over the newarnmng tasks.

The Queueing Model of Resource Allocation with Full Priority of Overflow Tasks

In this approach, illustrated in Fig. 5.4, we have assumatldherflow tasks have the
full priority, i.e., new arrival tasks will not be served ifidre is an overflow task left in
gueue. We have modeled RAM as Markovian multiserver quewsistgm with two prior-
ity levels.

The vertical direction illustrates the overflow tasks wagtin the queueing system.
The horizontal direction demonstrates the new incominigstagiting in the queue to get
service. The maximum number of the waiting tasks in queug,.isThe states are labeled
as(i, 7, k): i denotes the number of overflow tasks waiting in quguedicates the number
of new arriving tasks waiting in queue ahdresents the admission mode: 'A’ represents
the acceptance of the task arit},’ and 'R’ are corresponding to rejection of the overflow
and new incoming task respectively.

The new arriving tasks can only get service in the first hariabline direction which

is corresponding to the case where no overflow task is lefugug {(= 0). The dashed

128 Chapter 5: Prioritization of Overflow Tasks to Improve Perf@ance of Mobile Cloud

state shown in Fid. 5.4 is corresponding to the case of newiragrtask rejection and is
represented af), L,, Ry). The new task arrives with rate af If this task is accepted,
the system moves to the stdte j — 1, A)) with the rate ofP,5. Otherwise, the system
moves to(0, j + 1, A) which means the new task is added to the waiting new taskke f t
queue is full, a new task cannot be added to queue and systeasiftom staté0, L, A)
to (0, L,, Ry) with the rate ofg(1 — P;). Then, the system moves (0, L,, A) with rate
of n and the task is rejected.is the clean up rate and we have assumed105. P, is the
success probability of finding appropriate VMs in VMM ancelain this section, we will
explain how it is calculated.

As can be seen, in the other horizontal lines, new incomisigstarrive with rate o
and they only wait for the completion of overflow tasks= 0) to have access to resources.

The overflow tasks can get served in all vertical line digatdi This means that they
have access to the resources despite the new arrivals. fétegréhey have full priority
over new arriving tasks. The case of overflow task rejecsaepresent in the dotted states
which are represented 45, j, R,). The overflow tasks arrive in RAM with rate @f,.
Similar to the new arriving tasks, if the overflow task is guteel, the system moves to the
state(i — 1, j, A) with the rate ofP, 5. Otherwise, the system moves to the state1, j, A)
which means the overflow task is added to the waiting taskshisncase, if the queue is
full, system moves from statd.,, j, A) to (L,, j, R,) with the rate of3(1 — P;). Then, the
system goes back td,, j, A) with rate ofy and the task is rejected.

In this approach of RAM, the task blocking probabilify,,, which is due to having full

Chapter 5: Prioritization of Overflow Tasks to Improve Perfance of Mobile CloudL29

- B(1-py
oy
Ly OR,

Figure 5.4: RAM: Overflow tasks have full priority over newiaimg tasks.

RAM module, is computed as

Lg—1
Py =Y (i, Ly, A) +ZZ Ly, j, k) + (0, Ly, Ry) (5.1)
=0 7=0 kESs

whereS; = {A, R, }.
The task rejection probability?,., which is the rejection due to insufficient resources,

is calculated as:

Lq
Py, = @W(O, L, Ry)+ Z MlT_PS)W(Lan R,) (5.2)

130 Chapter 5: Prioritization of Overflow Tasks to Improve Perf@ance of Mobile Cloud

The total rejection probability?’, ;, is the sum of the two above parameters:

Prj:qu+Pbr (53)

The Queueing Model of Resource Allocation with Threshold-bas#&Priority of Over-

flow Tasks

In order to decrease the waiting time of new arrivals andngithem more opportu-
nity to have access to resources, we have followed a secqrdagh. In this approach,
overflow tasks have threshold-based priority over new alsju.e., new arrival tasks and
overflow tasks will be served based on the probabilitieB,pfand P, respectively until the
number of waiting overflow tasks reaches a threshBldAfter this threshold, the overflow
tasks have the full priority in the system and new arrivatsusth wait as long as number of

waiting overflow tasks is larger than the threshaRy. is calculated a®y = %5~ and P,

is obtained as>, = Af&;

In Fig.[5.5, the vertical direction demonstrates the overfimsks waiting in the queue.
The horizontal direction illustrates the new incoming &skaiting in the queue to get
served. The maximum number of waiting taskd.js The states are labeled similar to the
first approach.

In this case, new arriving tasks can get service in the hotatdine direction while the
number of waiting overflow tasks is less than a threshold (7}.) and overflow tasks do
not have priority over the new incoming tasks. When the nurobesiting overflow tasks

is larger thar,.,, new arrivals must wait until this number gets less tiian The dashed

states illustrate the case of new incoming task rejectiahtha corresponding states are

Chapter 5: Prioritization of Overflow Tasks to Improve Perfance of Mobile CloudL31

represented a8, j, Ry) where: < T,. The new tasks arrive with rate af If the task is
accepted, the system moves to the statg— 1, A) with the rate ofPy P; 5. Otherwise, the
system moves t¢i, j + 1, A) and the task waits in queue. In this case, if the queue is full,
system moves to the state @f L,, Rx) with the rate ofg(1 — Py P;) and after rejecting
the task, system will move to state L,, A) with clean up rate of.

It can be seen that in the horizontal direction lines with enbar of line less than or
equal toT,., both type of tasks get same type of service; whereas in thedmbal direction
lines beyond the threshold, new incoming tasks arrive watie of A and they only wait
for the number of waiting overflow tasks get less than thestho&l value { < T}) to be
served.

The overflow tasks can get service in all vertical line die@ts and they have access
to the resources without considering whether the new dsremee permitted to access the
resources or not. Thus, overflow tasks have a higher pritvég new arriving flow. The
case of overflow task rejection is represented in the dotedswhich are represented as
(1,7, R,). The overflow tasks reach in RAM with, rate. If the overflow task is accepted,
the system moves to the staie- 1, j, A) with the rate ofP, P, 5 or P,3; this rate depends
oni. if i« < T,, the rate isP, P, and ifi > T,, the rate isP,5. On the other hand, if task
is rejected, the system moves(io+ 1, j, A) and the overflow task is added to the waiting
tasks. In this case, if the queue is full, system moves frates$t,, j, A) to (L,, j, R,)
with the rate of3(1 — P;). Then, the system goes back(tb — ¢, j, A) with rate ofy and
the task is rejected.

In this case, task blocking probabiliti?,, and task rejection probabilit¥,, are calcu-

132 Chapter 5: Prioritization of Overflow Tasks to Improve Perf@ance of Mobile Cloud

PNPSﬁ PNPS,B Oo
PoPB

Figure 5.5: RAM: Overflow tasks have a threshold-based yioxer new arriving tasks.

lated as follows:

T Lq
Py =YY wli,Lyk)+ > > w(Lyj k) (5.4)
1=0 k€S J=0 k€S2

whereS; = {A, Ry} andS; = {A, R,}.

Chapter 5: Prioritization of Overflow Tasks to Improve Perfance of Mobile CloudL33

T, Lq
A= > O g + Y e, m) 69
i=1 =1

Total rejection probability,;, is the sum ofF,, and F,.

5.2.2 The Queueing Model of Virtual Machine Provisioning

In the cloud datacenter, each mobile device is associatddamtcloud clone, which
runs on VMs that can execute mobile applications on behathefmobile device. Our
default setting for resource allocation is using only one MMich clones the data and
applications of the mobile device called primary server.e fhimary server is always
online, waiting for the mobile device to connect to it. If theobile application needs
more computation resources, system will use the secondofyyg®1s. These VMs, called
secondary servers, in general do not clone the data anccapptis of a specific mobile
device and can be allocated to any user on demand. When théerdebice connects to
the cloud, it communicates with the primary server whichuimtmanages the secondaries,
informing them that a new client has connected. All intecacs between the mobile device
and the primary server are as cloud user-server, but nowrthmagy server behaves as a
(transparent) proxy for the secondaries. Every time whemrtbbile device asks for service
requiring more than one VM, the primary server resumes tlee@g number of secondary
clones.

We use the semantics of VM forking to clone the primary andsdary servers. The

VM fork abstraction lets an application take advantage ofidIresources by forking mul-

134 Chapter 5: Prioritization of Overflow Tasks to Improve Perf@ance of Mobile Cloud

tiple copies of its VM. VM fork preserves the isolation andeaf software development
associated with VMSIEO]. The basic idea behind VM forkingsisiilar to the familiar
process fork: a parent VM (in our case primary server) issufesk call which creates a
number of clones, or child VMs (secondary servers). Eacthefforked VMs proceeds
with an identical view of the system, but using a unique idiemt(vmid) allows them to
be distinguished from one another and from the parent. Heweach forked VM has its
own independent copy of the operating system and virtul @isd state updates are not
propagated between VMs. Forked VMs are entities whose meimage and virtual disk
are discarded once they exit. Any application-specificestatvalues they generate must
be explicity communicated to the parent VM, for example bgssage passing or via a
distributed file system. VM fork has to be used with care aspticates all the processes
and threads of the parent VM; if multiple processes withie $ame VM simultaneously
invoke VM forking, conflicts can happen. Therefore, VM fotosild be used in VMs that
have been customized to run a single application or perfaspeaific task. Upon VM fork,
each child is configured with a new IP address based on its,\anid it is placed on the
same virtual subnet as the VM from which it was created.

Regarding to the dynamic demands of mobile service requestassume that number
of tasks in a job varies randomly during the time that job isénvice. The arrival of the
jobs to the system is according to the Poisson distributiibim thie rate of\ and arrival rate
to each PM is a Poisson process with the rat&;ofA new arriving job initially demands
service for a single task. A job generates random numbers&staccording to a Poisson
process with the rate of,; during its service time. Each task requires a VM for its exiecu

and task execution times are exponentially distributedviSe time of a job begins with

Chapter 5: Prioritization of Overflow Tasks to Improve Perfance of Mobile CloudL35

its arrival to the system and it is completed when there anmoie tasks belonging to that
job left in the system.

The proposed VMM develops the instantiation, provisioramg deployment of VMs
on PMs. The service time is corresponding to the task exattitne of the allocated VM
and time spent on generation of overflow in PMs. The modeliprans all the tasks of a
job request on a single PM.

Fig.[5.6 depicts the VMM model in a PM where the PM can accepiougree jobs.
We have developed a multi-dimensional CTMC to model the accodation of jobs. Each
state is labeled &3, j, k) wherei indicates the jobs waiting in the PM's queue to get served,
j denotes the number of primary servers in service process general, the number of
jobs being served on the PM aikddenotes the number of secondary servers which are
serving a job. Each PM can host upito VMs. Mean service rates of primary VMs
and secondary VMs are respectively represented aad d and they are exponentially
distributed.O, denotes the incoming overflow rate which is directed from RANhe PMs
andO, represents the overflow rate which is generated in the PM @hdenvforwarded to
RAM for reallocation processp is the instantiation rate of a VM and it is also considered
as the transition rate of adding a new serving job in the PM;aasbe seen in Fi§. 5.6,
this transition rate is not constant through the Markoveystand it varies according to
the number of jobs which are in service in the PM. The detdilhe transition rate are

presented later in this section. The arrival rate to each 2Ms computed as

N o=) (5.6)

136 Chapter 5: Prioritization of Overflow Tasks to Improve Perf@ance of Mobile Cloud

whereP,, is the blocking probability obtained from RAM and is the number of PMs in
the system.

In Fig.[5.8, the main plane of the multi-dimensional Markoedsl illustrates the wait-
ing queues and serving status of primary VMs. The horizamtak represent how many
primary tasks, more accurately how many mobile job requestswaiting in line to get
served; vertical rows are corresponding to the number & jolservice.

In the secondary task queues which are branched off from #e ptane of the Markov
model, forked tasks are generated according to Poissaibdisbn with the rate of.;. The
mean service ratel, is exponentially distributed. The maximum length of thes®lary
or forked task queue can ldewhich in this model we have consideret:= 4, i.e., every
job is assigned to a primary VM and can get a maximum of 4 seaxyrdMs. The forking
time is included in the service time of the secondary taskigse

The secondary task queues are modeled as Birth-Death qgesystems with finite
population,L-server caseN//M/L//L). This queueing system is inspired by the Birth-
Death queueing systems with finite population present@ﬂ\ [The equilibrium proba-
bility, px, which is the stationary state probability of being in thk state of the queue, can

be obtained as

N\ k
n=m (%) () 57)

Chapter 5: Prioritization of Overflow Tasks to Improve Perfance of Mobile CloudL37

we computey,, for the states off < k£ < L. p, is calculated as

= [Z (%)k @] - T 58

andpy, is computed as

(&) (1)

s AL)< k<L
pp = 4 @A (5.9)
0 otherwise

The average number of secondary tasks in the queue is

o kZOk(%)k(’};) L, /d
Q:;kp’“: L+ a/DE 1+ Aa/d

(5.10)

In order to decide the number of mobile job requests whichbsaaccommodated on a
single PM, we have defined some intermediate parameters.aWeéehlimitation over the
number of tasks in the job requests (i + 1) and a constant number of VM available on
each PM (defined as). Therefore, we can be sure that in caseof- L, at least one job
can be accommodated on a PM. The number of jobs with sizejofl in a PM is at least

Parameter represents the minimum number of tasks which can be deplayedPM.
However, if we consider jobs accommodable on a PM, some of the VMs on the PM will
be underused. Since we want to make sufficient use of VMs, weegondc jobs and the

number of tasks which we have deployed on a PM is consideredra$. However, we

138 Chapter 5: Prioritization of Overflow Tasks to Improve Perf@ance of Mobile Cloud

Figure 5.6: Virtual machine provisioning model of a PM wittetability to accept maxi-
mum three jobs.

have assumed that after deployingbs, the transition rate of moving to serve the next job
is less than the previous jobs.

In our case:m = 10 and L = 4, i.e., a task of a mobile user can acquire maximum 5
VMs (1 primary and 4 secondary VMSs). Also= L%J = 2 and the number of tasks on a
PMis: 2 + 1 = 3 which is the number we have used in the provisioning modllstiated
in Fig.[5.8.

As can be seen, the transition rate in not constant in VMMuihber of current tasks
on a PM is less than or equalpthe transition rate ig which corresponds to instantiation

rate and we assume the instantiation time is equal to 1 seaniber of current tasks hosted

Chapter 5: Prioritization of Overflow Tasks to Improve Perfance of Mobile Cloud.39

in a PM is more tham, the transition rate ig; , and is obtained as
Piax = Pti,x "2 (512)

wherez indicates the number of served jobs more thaim the case illustrated in Fig_5.6,
x is equal to 1.Pt; , is the transition coefficient corresponding to levekhere: jobs are

waiting in line and is computed as

532 bl
LQ (5.13)
Z:f p(is jrs k)

Pti,x =

where(c +) is the number of primary VMs until the horizontal level Q) is the average
number of expected secondary tasks in a single secondang gunel its value is calculated
as [5.10). In the nominator df (5]13), with + z) jobs under service andjobs waiting

in line, the sum of steady-state probabilities where thgtleof each secondary queue is
larger than(is calculated and in denominator, the sum of steady-stateapilities for full
length of each secondary queue is calculated.

The probability that job request cannot be deployed on thadddIculated as

L C+§ Lq 1
Poa =p(Lg,0,0)+ > > p(Ly,j k) + Y Y P, (5.14)
k=1 j=1 i=0 ycd

wherep(i, j, k) indicates the steady-state probability of the correspumdtate and’, is a
member ofd.

® is a set of product of probability of states (one state froohgab’s secondary queue

140 Chapter 5: Prioritization of Overflow Tasks to Improve Perf@ance of Mobile Cloud

in the vertical direction) which the sum of their correspimgdsecondary VMs is more than
the capacity of secondary VMs on a PM. The probability thatdtal number of secondary
VMs in a PM gets more than a specific number is a combinator@dability and it can be
computed as a sum of products[in (3.14)is represented as

c c
c+2 c+2

.. C
=3 [T pld k) D k>m—(c+3) (5.15)
=1 =1

wherem — (c + §) denotes the number of allowed secondary VMs on a PM.

The successful provisioning probability can be obtainedfr

P,=1-PN (5.16)

Finally, the overflow rate generated in a P§,,, is calculated as

Qi/)FE | O/ D)
c+E)! m—(c+%)]!
0, = -G (5.17)
ct+3 m—(c+§) /i)t (i /d)d
Z i ci

i=0 j=0

il 51

In order to obtainD,, we have computed the probability that a job request is l&dck
due to lack of resources. We have been inspired by ErlangmBuiarand the truncation of
a system consisting two independent queues in a multi-dsraeal Markov systenﬂG] to
determine this rate.

Algorithm[2 demonstrates how we have solved the VMM modul @stained its pa-

rameters. In Section 5.2.3, we will discuss the successivation model of RAM and

Chapter 5: Prioritization of Overflow Tasks to Improve Perfance of Mobile Cloudl41

VMM. Algorithm [Zlwill only be deployed for one time during tHiest iteration of the inte-
grated model. During the next iterations of the integratedieh, same transition rates will
be used in VMM module.

In Algorithm[4, first, we assume that all the transition ratethe module are equal to
(¢) and we solve the model using this rate and obtain the steatiy4srobability of all
the states and overflow rate; then, we calculatelthe, for every level after the jobs in
the system; according to these new transition rates, we sbé&/module and we compute
the new values of steady-state probability of all the statesusing these values, we can
calculateP;,. Overflow rate is independent of the steady-state prolbigsilitherefore, it is

not needed to calculate it again.

Algorithm 7 First Time Solving of VMM Module
Use basic transition/instantiation rdte) to solve the sub-model;
Compute outgoing overflow raté),;
CalculatePt; , coefficient for every corresponding state;@ind level ofz;
Solve the module with new transition ratgsor ¢; ..);
CalculateP, in the new solved sub-model;

5.2.3 The Integrated Model

The overall model, consists of two interactive stochastixlutes. This reduces com-
plexity of the model itself but the computational complgf solving the model is solved
via successive fixed point iteration. The associated psmatiois shown in Algorithril8. It-
eration ends when the difference between the values of piidi®s in successive iterations
drops below a predefined thresholtl & 10~°).

The interactions among modules are presented in[Eig). 5.7M\d@dmputes the suc-

cessful provisioning probability/,) and also the overflow raté),). Success provisioning

142 Chapter 5: Prioritization of Overflow Tasks to Improve Perf@ance of Mobile Cloud

Phg

PS) OO

Figure 5.7: Interaction of provisioning modules.

probability and overflow rate are used as input parameteRBAlI. On the other hand,
RAM computes the task blocking probability,,, which is the input parameter to VM pro-
visioning module. Note that only during the first iteratidfiy provisioning module will

execute Algorithnil7 to find the transition rates.

Algorithm 8 The Integrated model Algorithm
Input: Initial successful provisioning probability and overfloate: Py, O.;
Output: Blocking probability in the RAM:F,,;
count= 0; maximum= 30; A = 1;

Pygo +— RAM (Pyg, On);

while A > 10"%do
count<— count +1; P, <— VMM (P,);
O, +— VMM (Pyy);
Py <— RAM (P, 0,);
A +— ’(qul - quO)’;
Pygo <— Py
if count == maximunthen

break;

end if

end while

if count == maximunthen
return -1;

else
return Ppgo;

end if

Chapter 5: Prioritization of Overflow Tasks to Improve Perfance of Mobile CloudL43

5.3 Performance Evaluation

The proposed model is solved using Maplem [26].

To evaluate the performance of the proposed mobile clougsysve have solved the
model for four scenarios. First, we kept the mean service tonstant and varied task
arrival rate; in this case, we have analyzed the effectsairmng mobile tasks on three
important metrics, blocking probability, total delay antilipation. Second, we kept the
task arrival rate constant but varied mean service timégigdase we investigate the impact
of service time on blocking probability and total delay inspd by the cloud center. In both
of these scenarios, the maximum length of the secondarygtsske or in other words, the
number of forked tasks accepted in a j@b,is equal to 4. Note that size of a job is equal
to L + 1. In the third scenario, we kept mean service time and taskahnate constant
and varied L. We have analyzed the impact of changing themmaxi number of accepted
tasks in a job on blocking probability and total delay. In therth scenario, we evaluate
the effect of changing threshold location in overflow quenélwcking probability in the
case of threshold-based priority; in this scenario, arrate, mean service time arddare
constant and threshold location is changed.

To facilitate comparison under different combination oétband variable independent
variables, we have plotted the diagrams as functions ofexfféoad, computed gs =
m#w wherem, the maximum number of VMs running on a single PM is assumée tt0
andXN, the total number of PMs in the system is 100. Also, we haverasd that_, = 50
and except in fourth scenario represented in Fig.15.15 wimidhreshold is variable, in

other case¥,. = 30.

144 Chapter 5: Prioritization of Overflow Tasks to Improve Perf@ance of Mobile Cloud

5.3.1 Task Blocking Probability

Task blocking probability obtained in two first scenariosslown in Fig$.5)8 and
[5.9. As expected, probability of task blocking increaseth\the offered load. Overflow
tasks are given priority and, consequently, easier acoagsburces under both full and
threshold-based priority mechanisms, which is why thelotagprobability is much lower
for such tasks. However, when threshold-based prioritypjgiad, blocking probability
for newly arrived tasks is noticeably lower, while that fmeoflow tasks is slightly higher.
This indicates that the performance for one or the othertypeesks may be adjusted within
certain limits. In the worst case, less than 4of overflow $asie blocked.

We have also investigated the blocking probability understant offered load but with
a variable limit to the number of secondary tagk@.e, third scenario); the results obtained
under both service policies are shown in Fig. 5.10. Notetthatasel, = 0 corresponds
to the absence of secondary tasks which, by extension, nteanthere are no overflow
tasks; consequently, there is no corresponding data vatdlereshold-based priority curve.
Again, new arriving tasks suffer a higher blocking rate vitstowly increases with the task
forking limit L; overflow tasks, on the other hand, are not affected muchaltieetdual-
gueue prioritization mechanism presented above. As befmeshold-based prioritization
provides much better performance for new tasks than itgfidkity counterpart. We note
that a rough upper bound for the probability that a job doésamplete because a forked
task is ultimately blocked may be obtained as the producted#mength of secondary task

queue and probability of overflow?,,Q.

Chapter 5: Prioritization of Overflow Tasks to Improve Perfance of Mobile CloudL45

0.35 7 = 0.35
] e
0.3- - 0.3-
0.25 1 pa 0.25 1 o

0.2+ ’ 0.2 7
0.151 0.151 //
0.1 / 0.14 /,_,—/

E ~ E 7
0.05 1 //) 0.05 P e .~

01 02 03 04 ho.‘5 06 07 08 01 02 03 04 05 06 07 08
rno r

3o

Overflow Tasks Overflow Tasks
E— New Arriving Tasks — New Arriving Tasks

(a) Task Blocking Probability in case of full pri- (b) Task Blocking Probability in case of
ority. threshold-based priorityl{ = 30).

Figure 5.8: Task Blocking Probability wrt constant servioee and variable arrival rate in
case of giving full and threshold-based priorities to owsvftasks. Service time = 1 min.
Variable task arrival rate (100-1300 tasks/mih)= 4.

o2y 0.2
] //"
0.15 S/ 0154
] V. J—
0.1 // oy
1 // s
0.05 1 e 0.051 e
| _
01— : : : ——————— e : :
02 03 04 05 06 07 08 02 03 04 05 06 07 08
rho rho

Overflow Tasks Overflow Tasks
E— New Arriving Tasks — New Arriving Tasks

(a) Task Blocking Probability in case of full pri- (b) Task Blocking Probability in case of
ority. threshold-based priorityl{ = 30).

Figure 5.9: Task Blocking Probability wrt constant arrivate and variable service time
in case of giving full and threshold-based priorities torfiesv tasks. Arrival rate = 250
tasks/min. Variable service time (30-180 set)- 4.

5.3.2 Mean Task Delay

As for the mean task delays, threshold-based prioritinatifiers lower values (i.e.,
better performance), as can be seen in Figs] 5.17], 5.12 a28d/As can be expected, mean

delays increase rather sharply with the offered load. Assyfstem operates well below

146 Chapter 5: Prioritization of Overflow Tasks to Improve Perf@ance of Mobile Cloud

0.35 7 — 0.35
- 03]
0.25 0.25 -
0.21 024
0.15° 0.15 1
0.1 0.19
0.05 - 0.05 S
0L, : : : : oL : : :
0 1 2 3 4 0 1 2 3 4
L L

Overflow Tasks
New Arriving Tasks

Overflow Tasks
New Arriving Tasks

(a) Task Blocking Probability in case of full pri- (b) Task Blocking Probability in case of
ority. threshold-based priorityl{ = 30).

Figure 5.10: Task Blocking Probability wrt constant sendioee and variable arrival rate
in case of giving full and threshold-based priorities torflesv tasks. Arrival rate = 1300
tasks/min. Service time = 1 min. Variable L (0-4).

saturation, rise in delay values is approximately linear.cdse of variable task forking
limit, the rise is somewhat milder, but this may be due to thengaratively low value of

offered load utilized to generate data for Hig, 5.13. We nlo&t for the same offered load
in the both priority cases, the cloud center generally afgpabe more sensitive to the
task arrival rate than to mean service time. This is due tootleghead imposed by the
waiting times and provisioning processes which increaggstive number of tasks but is

independent of the task service time.

5.3.3 Utilization

Server utilization is shown in Fig. 5.114. Under both priation policies, utilization
increases with the offered load. As the system does not eataration, the rate of rise
is approximately linear in both cases, although some flaitemay be observed at offered
loadp = 0.7 and above. We note that utilization is slightly lower whelh fuiority is given

to the overflow tasks, compared to the threshold-basedypsliitce the number of overflow

Chapter 5: Prioritization of Overflow Tasks to Improve Perfance of Mobile CloudL47

50- 50

454 1

401 40i

35]
30+

30]

251]
20i

201

01 02 03 04 05 06 07 08 01 02 03 04 05 06 07 08
rho rho
(a) Total Delay in case of full priority. (b) Total Delay in case of threshold-based priority

(T, = 30).

Figure 5.11: Total Delay Probability wrt constant serviceet and variable arrival rate in
case of giving full and threshold-based priorities to owsvitasks. Service time = 1 min.
Variable task arrival rate (100-1300 tasks/min)= 4.

40 40+
351 35*:
30
30+ 1
25
25+]
20
20+]
15+
02 03 04 05 06 07 08 02 03 04 05 06 07 08
rho rho
(a) Total Delay in case of full priority. (b) Total Delay in case of threshold-based priority
(T, = 30).

Figure 5.12: Total Delay Probability wrt constant arrivate and variable service time
in case of giving full and threshold-based priorities torfiesv tasks. Arrival rate = 250
tasks/min. Variable service time (30-180 set)- 4.

tasks is low.

148 Chapter 5: Prioritization of Overflow Tasks to Improve Perf@ance of Mobile Cloud

18 18i
17.81
17.6 1 16-
17.4 |
17.21]
] 14+
17*:]
16.8 ’
16.6 1 12-
16.21]
L ‘ ‘ ‘ 1104 ‘ ‘ ‘ ‘
0 1 2 3 4 0 1 2 3 4
L L
(a) Total Delay in case of full priority. (b) Total Delay in case of threshold-based priority
(T, = 30).

Figure 5.13: Total Delay wrt constant service time and \@e@arrival rate in case of giving
full and threshold-based priorities to overflow tasks. vatirate = 250 tasks/min. Service
time = 1 min. Variable L (0-4).

0.8 0.8
0.7 0.71
0.6 0.6
0.5 05"
01 02 03 04 05 06 07 08 01 02 03 04 05 06 07 08
rho rho
(a) Utilization in case of full priority. (b) Utilization in case of threshold-based priority
(T, = 30).

Figure 5.14: Utilization wrt constant service time and &hle arrival rate in case of giving
full and threshold-based priorities to overflow tasks. &r¥ime = 1 min. Variable task
arrival rate (100-1300 tasks/minj. = 4.

Chapter 5: Prioritization of Overflow Tasks to Improve Perfance of Mobile CloudL49

0.95] ____-_“W\m_\

* “\“\“\‘_\WN\“\

- T
0.19

0.05 1

32 34 36 38 40
Threshold
Overflow Tasks
E— New Arriving Tasks

Figure 5.15: Task Blocking Probability wrt constant servioee and variable arrival rate
in case of giving full and threshold-based priorities torfhesv tasks. Arrival rate = 1000
tasks/min. Service time = 1 mir. = 4. VariableT, (25-40)

5.3.4 The Impact of Queue Threshold,

Fig.[5.1% shows the effect of queue threshold in the threshaked prioritization policy
on task blocking probability. As the threshold moves cldsehe queue size af, = 50,
value of the blocking probability for new and overflow tasks getting closer to each other
as the probability that the threshold will be exceeded dishies. Conversely, lower values
of the threshold push the system to behave in a manner closbat under full priority
in fact, full priority policy is equivalent to a thresholdxbed one with threshold value of

T, =0.

5.3.5 Task Blocking Probability Through Iterations

Fig[5.16 illustrates task Blocking Probability of new incagnand overflow tasks through
iterations in case of giving full and threshold-based fities to overflow tasks. The value
of last iteration is considered as the final value of eachmatar.

Overall, the threshold-based policy allows the cloud oferto fine-tune the perfor-

150 Chapter 5: Prioritization of Overflow Tasks to Improve Perf@ance of Mobile Cloud

0.35 * 0.35

0.3% 0.3
0.25 * n 0.25 =

0.25 0.2
0.15 * 0.15 A

O.lé 0.1+
0.05 * 0.05 A

5 R 5 10 3 R 5 10
Iteration Iteration

(a) Task Blocking Probability of new arriving (b) Task Blocking Probability of new arriving
tasks in case of threshold-based prioritl). (=

tasks in case of full priority.

30).
0.0111,
\ 0.04 7 -
0.01 /
\ o 1 //
0.035 - ~ /
0.009 ~ /] /[
/ -] /
\ ,’/] /
0.0081 | 0.03
00074 |/ |
/ 0.025 - /\\j
0.006 L ‘ ‘ ‘ ‘ : ‘ ‘ ‘ ‘ ‘
2 4 6 8 10 2 4 6 8 10
Iteration Iteration

(c) Task Blocking Probability of overflow tasks in(d) Task Blocking Probability of overflow tasks in
case of full priority. case of threshold-based priorit§,(= 30).

Figure 5.16: Task Blocking Probability through iteratioms dase of giving full and
threshold-based priorities to overflow tasks. Arrival €300 tasks/min. Service time =
1min. L =4.

mance of the cloud, as there are a number of parameters wdnchecadjusted to provide
the desired values, or ranges thereof, for critical perforoe indicators such as mean delay

and task blocking.

Chapter 5: Prioritization of Overflow Tasks to Improve Perfance of Mobile Cloudl51

5.4 Chapter Summary

We have proposed a solution for resource allocation of anashel job requests in mo-
bile cloud computing. We have developed two priority schefoeresource allocation in a
server pool based on giving different priorities to the @eer tasks including full priority
of overflow tasks and the threshold-based priority of overflasks. Unlike most of ex-
isting works that either rely on a linear programming foratidn or on intuitively derived
heuristics that offer no theoretical performance guaesteur model does not sacrifice the
complexity of offloading problem just to make it solvablest@ad, complexity is addressed
through the use of two interacting stochastic models whrelsalved through fixed point
iteration to achieve any desired error level. We have ingatdd the impact of task arriving
rate, service time and the size of offloaded job on the pedioga metrics for both priority
schemes. Also, we have evaluated the effect of thresholtitoton the threshold-based
priority scheme. Our results confirm that threshold-bag@atity presents better system
performance than full priority of overflow tasks.

Also, we have observed that the performance metrics do roigshlinearly with regard
to the offered load, which indicates that finding the settiafparameter values that would
lead to optimal values of performance metrics is non-ttivia

A continuation to the work presented in this chapter can eertbdification of threshold-

based priority scheme in order to adjust the location ofsthoéd in the overflow queue.

Chapter 6

Conclusion

In this thesis we have examined the behavior of an laaS cleta center in which
servers are partitioned into pools of hot, warm, and coldhimes. This evaluation has
been performed in different operating areas of linear,siteom to saturation and satura-
tion. We have observed that the manner in which servers atiégaed in the pools affects
the performance, sometimes even more than the variatiooesed load. We have also
demonstrated that the task arrival rate is more criticadupater affecting the performance
of the cloud datacenter than mean task service time, duestovérhead incurred in re-
source allocation and provisioning. We have also shown tti@tenergy expenditure is
highly dependent on the manner in which servers are pamitionto pools.

Also, in other attempt where PMs are partitioned into a hat arcold pool, we have
analyzed the effects of pool threshold and mean look up tmmieot and cold pools on
the performance. Our results confirm that the system shqédate well below saturation
in order to provide acceptable level of performance. Moeeowe have shown that the

performance is more sensitive to the mean look up time foPftiie in the cold pool.

152

Chapter 6: Conclusion 153

Next, we have proposed two task admission control algosthonprevent the cloud
system getting into the saturation region. These algosthne based upon establishing
thresholds for task arrival rate and task blocking proligbiDur simulation results confirm
that the proposed admission control algorithms improvéesyperformance.

Furthermore, we have proposed two task admission contgokighms utilizing two
controlling parameters, full rate task acceptance thidsand filtering coefficient. The
first algorithm is lightweight and it is appropriate for sgists which experience small steps
of change in task arrival rate. This algorithm is based omy{tmrm estimation of aver-
age utilization and offered load. The second algorithm fgieht for the systems with
unexpected arrival rate, is more computationally-intemsind is based on instantaneous
utilization. Our results confirm that both of the task admoissnechanisms maintain the
cloud’s stability. Also, we have observed that in differeamiges of incoming task rate and
mean service time, the average offered load will result endimilar average performance
in the cloud system.

We have proposed a solution for resource allocation of onastel offloaded jobs in
mobile clouds. This solution can be also used in other clovhish their users’ requests
fork new tasks. We have developed two priority schemes &ource allocation in a server
pool based on giving different priorities to the overflowkissThe overflow tasks are the
forked tasks that may not find sufficient resources in thegiedéed PM. The two priority
schemes include full priority of overflow tasks and the thidd-based priority of overflow
tasks. We have evaluated the impact of task arriving ratgicgetime and the size of of-
floaded job on the performance metrics for both priority sceg. Also, we have examined

the effect of threshold location on the threshold-basedrityischeme. Our results con-

154 Chapter 6: Conclusion

firm that threshold-based priority presents better systerfopnance than full priority of
overflow tasks.

Our next step in providing resource allocation for mobileucls will be the modifica-
tion of threshold-based priority scheme in order to adjhstlocation of threshold in the
overflow queue. Finding the best location of threshold is ptmazation problem and the
position can change according to the performance metritfsyeht policies adopted by
cloud computing providers or cloud system’s requiremeAiso, we have observed that
the performance metrics do not change linearly with regaitti¢ offered load. Therefore,
finding the optimal position of the performance metrics iclilt. One approach can be
the segmentation of the performance metrics into linedornsgand solve the optimization

problem according to these linear regions.

Appendix A

Abbreviations and Symbols

A.1 Abbreviations

ADP Approximate Dynamic Programming

AP Access Point

BMHA Batch Mode Heuristic Scheduling Algorithm
CPA Cloud Personal Assistant

CTMC Continuous Time Markov Chain

DES Discrete Event Simulation

EDF Earliest Deadline First

EWMA Exponentially Weighted Moving Average
FCFS First Come First Served

FIFO First-In, First-Out

FPTAS Fully Polynomial Time Approximation Scheme

155

156

Appendix A: Abbreviations and Symbols

GAMS
GPRS
laaS
IEEE
LMMF
LP
MAC
MFTF
MDP
NIST
PaaS
PGF
PHY
PM
PMM
PMSM
QoS
RAM
RASM
RED

RR

General Algebraic Modeling System

General Packet Radio Service
Infrastructure-as-a-Service

Institute of Electrical and Electronics Engineers

Lexicographically Max- Min Fair

Linear Programming

Medium Access Control

Most Fit Task First

Markov Decision Process

National Institute of Standards and Technology
Platform-as-a-Service

Probability Generating Function

Physical Layer

Physical Machine

Pool Management Module

Pool Management Sub-Model

Quiality of Service

Resource Allocation Module

Resource Allocation Sub-Model

Random Early Detection

Round Robhin

Appendix A: Abbreviations and Symbols 157

A.2

SaaS

SJF

SLA

SMDP

WLAN

VM

VMM

VMPM

VMSM

VNE

Service-as-a-Service
shortest-Job-First
Service Level Agreements
Semi-Markov Decision Process
Wireless LAN
Virtual Machine
VM Provisioning Module
Virtual Machine Provisioning Module
VM Provisioning Sub-Model

Virtualized Network Embedding

Symbols and Corresponding Descriptions

N Number of servers

m Number of available VMs on the PM

A, A+ Incoming task rate

y Partitioning coefficient of hot, warm and cold servers

p Offered load

ot Overall service rate

Py Blocking probability

P, Probability of occurrence of state

158 Appendix A: Abbreviations and Symbols

Aorg Full rate of incoming task rate

Ar Accepted rate of task arrivals

F.; Filtering coefficient

paw Average utilization of the system

T Threshold of full rate task acceptance rate
R System capacity / Thresholds of full rate task rejection
N,, Number of waiting overflow tasks in RAM
Ui Utilization threshold

ul Estimated average utilization

Ue Instantaneous utilization

My, Threshold margin

pur Offered load threshold

Pav Average offered load

1/6 Mean look up time to find a PM

1/n Mean clean up time in RAM

by Primary task arrival rate into the PMs

Aei Secondary task generation rate in a job

1 Mean service rate of primary tasks

d Mean service rate of secondary tasks

L, Size of queue/queues in RAM

L Maximum number of secondary tasks in a job

Appendix A: Abbreviations and Symbols

159

Minimum number of jobs which can be accommodated on a PM

Incoming overflow rate from the RAM to VMM
Outgoing overflow rate from the VMM to RAM
Threshold of number of waiting overflow tasks in RAM
Probability of giving service to the overflow tasks
Probability of giving service to the new incoming tasks
Successful provisioning probability

Blocking probability due to full RAM

Rejection probability due insufficient resources

Total rejection probability

Basic instantiation/ Full transition rate

Partial transition rate

Appendix B

Publications

B.1 Journal Papers

e Submitted, under reviews. Khojasteh, J. Misic, and V. B. Misic. Prioritization of
Overflow Tasks to Improve Performance of Mobile Cloud|BEE Transactions on

Cloud Computing (TCC) 2016

e To appear in:H. Khojasteh and J. Misic. Task Admission Control Policy in @lo
Server Pools Based on Task Arrival Dynamics,Wreless Communications and

Mobile Computing (WCMC) 2016

e V. B. Misic, M. S. I. Khan, Md. M. Rahman, H. Khojasteh and J. MisiSimple
Solutions May Still Be Best: On the Selection of Working Chasriela Channel-
Hopping Cognitive Network, InWireless Communications and Mobile Computing

(WCMC) 2013

e H. Khojasteh, J. Misic, and V. B. Misic. Integration of an IEBB2.15.4 RFID

160

Appendix B: Publications 161

Network with Mobile Readers with a 802.11 WLAN, Wireless Communications

and Mobile Computing (WCMC) 2012

B.2 Conference Papers

H. Khojasteh, J. Misic and V. B. Misic. Task Filtering as a Tasknission Control
Policy in Cloud Server Pools, IfEEE International Wireless Communications and

Mobile Computing Conference (IWCMC 201Bubrovnik, Croatia, August 2015.

H. Khojasteh, J. Misic and V. B. Misic. Task Admission Controf Cloud Server
Pools, INNEEE Wireless Communications and Networking Conference (WCNg),201

New Orleans, LA, United States, March 2015.

H. Khojasteh, J. Misic and V. B. Misic. Analyzing the ImpactRrovisioning Over-
head Time in Cloud Computing Centers]HEE Canadian Conference on Electrical

and Computer Engineering (CCECE20149ronto, ON, Canada, May 2014.

H. Khojasteh, J. Misic and V. B. Misic. Characterizing Energyn@amption of laaS
Clouds in Non-saturated Operation,|EEE INFOCOM 2014 Workshop on Mobile

Cloud ComputingToronto, ON, Canada, April 2014.

H. Khojasteh, J. Misic and V. B. Misic. A Two-Tier Integrated RFSensor Network
with a WiFi WLAN, In IEEE International Wireless Communications and Mobile

Computing Conference (IWCMC 2012)massol, Cyprus, August 2012.

J. Misic, H. Khojasteh, N. Khan and V. B. Misic. CSCD: A Simple ChahScan

Protocol to Discover and Join a Cognitive PAN,IEEE Wireless Communications

162 Appendix B: Publications

and Networking Conference (WCNC 201Raris, France, June 2012.

e J. Misic, N. Khan, H. Khojasteh and V. B. Misic. Towards an Eéfit Rendezvous
Protocol for a Cognitive PAN, IFEEE International Conference on Communications

(ICC 2012) Ottawa, ON, Canada, June 2012.

e H. Khojasteh and A. Abhari, Mobile Mash-up Model Based on Hy#2P Using
Ajax Technology. InSpring Simulation Multiconference (SCS/SpringSim10 Poste
Workshop in Collaboration with ACM/SIGSIMprlando, FL, United States, April

2010.

B.3 Book Chapters

e H. Khojasteh, J. Misic and V. B. Misic. Task Admission Controt Cloud Server
Pools, A chapter ilAdvances in Mobile Cloud Computing Systems, F. R. Yu and V.

Leung, editorsCRC Press (Taylor & Francis Group), December 2015.

Appendix C

Related Scripts

C.1 Resource Allocation Model in a Pooled laaS cloud

#Algorithm 1 Successive Substitution Method
#Input: Initial success probabilities in pools: Ph0O; PwO; P cO
#Input: Initial idle probability of a hot PM: Pi0
#Output: Blocking probability in Global Queue: BPq
#counter=0; max=30; diff=1

Digits:=20:

differc:=1:

maxim:=30:

Lqg:=50;

lambdast:=1000/3600:

alphah:=0.1736:

alphaw:=0.2291.

alphac:=0.2291:

phih:=0.021:

163

164 Appendix C: Related Scripts

phiw:=0.027:
phic:=0.03:
PhO:= 0.5:
Pw0O:= 0.8:
PcO:= 0.9:
Pi0:= 0.4:
Nh:=15: Nw:=10: Nc:=10:
energyfact:= 0.5:
Ntotal:=Nh+Nw-+Nc:
mu:=1/2400:
BPg0 <-RASM(PhO,Pw0,Pc0) (Fig2: Resource Allocation Sub -model)
rhol:=(alphac+lambdast+(PhO *alphah)+(Pw0 =*alphaw))/(alphah+lambdast);
rho2:=(alphah (1-PhO)+lambdast)/(alphaw+lambdast);
rho3:=(alphaw * (1-PwO0)+lambdast)/(alphac+lambdast);
lastrhol:=(((lambdast+(PhO *alphah)+(Pw0 *alphaw))/(alphaw))"Lqg)/Lq!;
lastrho2:= (((alphah * (1-PhO)+lambdast)/alphaw)"Lq)/Lq!;
lastrho3:= (((alphaw * (1-PwO0)+lambdast)/alphac)’Lq)/Lq!;
Gtruncl:=sum((rho1"k1)/k1!, k1=0..Lg-1);
k1="k1"
Gtrunc2:=sum((rho2°k1)/k1!, k1=0..Lg-1);
k1="k1"
Gtrunc3:=sum((rho3"k1)/k1!, k1=0..Lg-1);
k1="k1"
Gtrunc:=Gtruncl+Gtrunc2+Gtrunc3+lastrhol+lastrho2+l astrho3;
="M
for i from O to 2 do
for j from 0 to Lg-1 do

if (i=0) then

Appendix C: Related Scripts 165

resiv[illil:= ((rhol%)/j")/Gtrunc;
elif (i=1) then
resiv[il[il:= ((rho27)/jh/Gtrunc;
else
resiv[i][il:= ((rho37)/j"/Gtrunc;
end if;
od;
od;
resiv[0O][Lg]:=lastrhol/Gtrunc;
resiv[1][Lq]:=lastrho2/Gtrunc;
resiv[2][Lq]:=lastrho3/Gtrunc;
BPQO:= resiv[0][Lq]+resiv[1][Lg]+resiv[2][Lq];
[Nh,Nw,Nc]<-PMM(Ph0, Pi0) (Fig5: Pool Management Sub-mo del)
Gtrunc:=0: Gtruncl:=0: Gtrunc2:=0: Gtrunc3:=0: rhol:=0: rho2:=0: rho3:=0:
=T k="K kdi='kL
i:=Nh; j:=Nw; k:=Nc;
totalp:=0:
rhol:=FRw/RPi;
rho2:=RPi/FRw;
rho3:=(FRc+FRw)/(FRc+SU+RPi);
rho4:=(SU+FRw+RPi)/(SU+FRwW+RPI);
rho5:=(SU+2 * RPi)/(FRw+RPI);
SUw:=3: SUc:=2: RPi:=1: SU:=2:
FRw:=1/(lambdast * BPqO* (1-Ph0)+(1/SUw)):
FRc:=1/(lambdast * BPqO* (1-Ph0)+(1/SUc)):
Gtruncl:=sum((rho1°k1)/k1!, k1=0..i+-1);
k1l:="k1"

Gtrunc2:=sum((rho2"k1)/k1!, k1=0..j-1);

166 Appendix C: Related Scripts

k1l:="k1"

Gtrunc3:=sum((rho3"k1)/k1!, ki1=j..j+k);
k1l:="k1"

Gtrunc4:=sum((rho4"k1)/k1!, kl1=j..j+k-1);
k1l:='k1’:

Gtrunch:=sum((rho5"k1)/k1!, kl1=j-1..j+k-2);
k1l:="k1"

Gtrunc:= Gtruncl+Gtrunc2+Gtrunc3+Gtrunc4+Gtruncs;
mp:='mp":

Ncalculatori:=0:

Ncalculatorj:=0:

#Ncalculatork:=0:

for mp from 0 to i do

pmiv[i-mp][jllk+mp]:= ((rhol"mp)/mp!)/Gtrunc;

Ncalculatori := Ncalculatori+(i-mp) * pmiv[i-mp][jl[k+mp];
Ncalculatorj := Ncalculatorj+j * pmiv[i-mp][j][k+mp];
#Ncalculatork := Ncalculatork+(k+mp) * pmiv[i-mp][j][k+mp];
od;
mp:='mp”:

for mp from 0 to j-2 do

pmiv[O][j]-mp]k+i+mp]:= ((rhol™(mp+i))/(mp+i)!)/Gtru nc;
Ncalculatorj := Ncalculatorj+(j-mp) * pmiv[0][j-mp][k+i+mp];
#Ncalculatork := Ncalculatork+(k+i+mp) * pmiv[0][j-mp][k+i+mp];
od;
mp:='mp”:

for mp from 0 to j-1 do
pmiv[i+mp][j-mp]k]:= ((rho2"mp)/mp!)/Gtrunc;

Ncalculatori := Ncalculatori+(i+mp) * pmiv[i+mp][j-mp][K];

Appendix C: Related Scripts 167

Ncalculatorj := Ncalculatorj+(j-mp) * pmiv[i+mp][j-mp][K];
#Ncalculatork := Ncalculatork+k * pmiv[i+mp][j-mp][K];

od;

mp:='mp”:

for mp from 0 to k do

pmiv[i+j+mp][0][k-mp]:= ((rho3"(Mmp+j))/(mp+j)!)/Gtru nc;
Ncalculatori := Ncalculatori+(i+j+mp) * pmiv[i+j+mp][0][k-mp];
#Ncalculatork := Ncalculatork+(k-mp) * pmiv[i+j+mp][0][k-mp];
od;
mp:='mp”:

for mp from 0 to k-1 do
pmiv[i+j+mp][1][k-mp-1]:= ((rhod™(mp+j))/(mp+j))/Gt runc;
Ncalculatori := Ncalculatori+(i+j+mp) * pmiv[i+j+mp][1][k-mp-1];
Ncalculatorj := Ncalculatorj+pmiv[i+j+mp][1][k-mp-1];
#Ncalculatork := Ncalculatork+(k-mp-1) * pmiv[i+j+mp][1][k-mp-1];

od;

mp:='mp’:

for mp from 0 to k-1 do
pmiv[i+j+mp-1][2][k-mp-1]:= ((rho5"(mp+j-1))/(mp+j-1))/Gtrunc;
Ncalculatori := Ncalculatori+(i+j+mp-1) * pmiv[i+j+mp-1][2][k-mp-1];
Ncalculatorj := Ncalculatorj+2 * pmiv[i+j+mp-1][2][k-mp-1];
#Ncalculatork := Ncalculatork+(k-mp-1) * pmiv[i+j+mp-1][2][k-mp-1];

od;

mp:='mp":

Nh:=Ncalculatori;

Nh:= ceil(Nh);

Ncalculatori:=0:

if (Nh=0) then

168 Appendix C: Related Scripts

Nh:=1:
end fif;
Nw:=Ncalculatorj;
Nw:= ceil(Nw);
Ncalculatorj:=0:
if (Nw=0) then
Nw:=1:
end if;
Nc:= Ntotal-(Nh+Nw);
#while diff >= 10™-6 do
Nhvaraverage := O:
counter:=’counter’:
for counter from 1 to maxim while differc > 0.000001 do
[Ph, Pi] <-VMPSM-hot(BPq0,Nh)
i’ = ke='Kr k1=K k2:=k2: mi=10:

lambdah:=lambdast * (1-BPq0)/Nh:

Gtruncl:=sum((((mu+lambdah)/(phih+lambdah))"k1)/k1! ,k1=0..1);

k1l:="k1"

Gtrunc2:=sum((((mu-+lambdah)/(2 * phih+lambdah))“k1)/k1!, k1=2..Lq);

k1:='k1’:

Gtrunc3:=sum((((2 * mu+lambdah+phih)/(phih+lambdah+mu))°k1)/k1!,k1=0..1);
k1l:="k1"

Gtrunc4:=sum(sum((((k2 * mu+lambdah+2 * phih)/(2 * phih+lambdah+(k2-1) *mu)) k1)
/k1!, k1=2..Lq),k2=2..m-1);

k1:='k1": k2:='k2’:

Gtrunc5:=sum(((m * mu+lambdah+2 * phih)/(phih+lambdah+(m-1) *mu)) k1)
/k1!,k1=0..Lg+1);

k1:='k1"

Appendix C: Related Scripts

169

Gtrunc6:=sum((((phih+lambdah)/(m * mu+lambdah))’k1)/k1!, k1=0..Lq);
k1l:='k1’:

Gtrunc:= Gtruncl+Gtrunc2+Gtrunc3+Gtrunc4+Gtrunc5+Gtr unce;
totalp:=0;

for t from O to 1 do

vmivh[{][1][0]:= (((mu+lambdah)/(phih+lambdah))"t)/ th)/Gtrunc;

="t
for t from 2 to Lg do
vmivh[t][2][0]:= ((((mu+lambdah)/(2 * phih+lambdah))"t)/t!)/Gtrunc;

t="t"
for t from O to 1 do
vmivh[O][t][1]:= ((((2 * mu+lambdah+phih)/(phih+lambdah+mu))-t)/t!)/Gtrunc;
od;
t="t"
for t from 2 to Lg do
for n from 1 to m-1 do
vmivh[t][2][n]:= ((((n * mu+lambdah+2 * phih)/
(2 * phih+lambdah+(n-1) * mu))"t)/t!)/Gtrunc;
od;

t="t"" n:='n"

vmivh[0][0][m-1]:= 1/Gtrunc;

for t from O to Lg do
vmivh[t][1][m-1]:= ((((m * mu+lambdah+2 * phih)/
(phih+lambdah+(m-1) *mu))"t)/t!)/Gtrunc;

od;

170 Appendix C: Related Scripts

t="t"

for t from 0 to Lg do

vmivh[t][0][m]:= ((((phih+lambdah)/(m * mu+lambdah))~t)/t!)/Gtrunc;
od;
="t
Bh:= sum(vmivh[Lq][2][t],t=0..m-2)+vmivh[Lq][1][m-1] +vmivh[Lq][0][m];
t="t"
Ph:= 1-(Bh"Nh);
Pw <-VMPSM-warm(BPqO0,Ph,Nw) (Similar to Fig4: VMPSM for a PM in hot pool)

i =y k="K k1:='k1: k2:='k2 m:=10:

lambdaw:=lambdast *(1-BPq0) =* (1-Ph)/Nw:

Gtruncl:=sum((((mu+lambdaw)/(phiw+lambdaw))"k1)/k1! ,k1=0..1);

k1l:="k1"

Gtrunc2:=sum((((mu-+lambdaw)/(2 * phiw+lambdaw))"k1)/k1!, k1=2..Lq);

k1l:="k1"

Gtrunc3:=sum((((2 * mu+lambdaw+phiw)/(phiw+lambdaw+mu))“k1)/k1!,k1=0..1);
k1:='k1’:

Gtrunc4:=sum(sum((((k2 * mu-+lambdaw+2 * phiw)/

(2 » phiw+lambdaw+(k2-1) *mu))°k1)/k1!, k1=2..Lq),k2=2..m-1);
k1l:='k1": k2:='k2":
Gtrunch5:=sum((((m * mu+lambdaw+2* phiw)/(phiw+lambdaw+(m-1) *mu))“kl)

/k1!,k1=0..Lq+1);

k1l:="k1"

Gtrunc6:=sum((((phiw+lambdaw)/(m * mu+lambdaw))’k1)/k1!, k1=0..Lq);
k1:='k1"

Gtrunc:= Gtruncl+Gtrunc2+Gtrunc3+Gtrunc4+Gtrunc5+Gtr unce;
totalp:=0;

for t from 0 to 1 do

Appendix C: Related Scripts 171

vmivw([t][1][0]:= ((((mu+lambdaw)/(phiw+lambdaw))"t)/ th/Gtrunc;

od;
L=t

for t from 2 to Lg do

vmivw([t][2][0]:= ((((mu+lambdaw)/(2 * phiw+lambdaw))t)/t!)/Gtrunc;

od;
="t
for t from O to 1 do

vmivw[0][t][1]:= ((((2

t="r"
for t from 2 to Lg do
for n from 1 to m-1 do
vmivw[t][2][n]:= ((((n
(2 » phiw+lambdaw+(n-1)
od;
od;
t="t" n:='n"
vmivw[0][0][m-1]:= 1/Gtrunc;
for t from 0 to Lg do

vmivw[t][1][m-1]:= (((m

* mu-+lambdaw+phiw)/(phiw+lambdaw+mu))"t)/t!)/Gtrunc;

* mu-+lambdaw+2* phiw)/

*mu))"t)/t!)/Gtrunc;

* mu+lambdaw+2 * phiw)/

(phiw+lambdaw+(m-1) * mu))"t)/t!)/Gtrunc;

od;
L=t

for t from O to Lg do

vmivw[t][0][m]:= ((((phiw+lambdaw)/(m * mu-+lambdaw))t)/t!)/Gtrunc;

od;

172 Appendix C: Related Scripts

Bw:= sum(vmivw[Lq][2][t],t=0..m-2)+vmivw[Lq][1][m-1] +vmivw[Lq][O0][m];
="t

Pw:= 1-(BW'Nw);

Pc <-VMPSM-cold(BPq0,Ph,Pw,Nc)

i =T k=K k:='k1: k2:='k2"; m:=10:

lambdac:=lambdast *(1-BPg0) = (1-Ph) =*(1-Pw)/Nc:

Gtruncl:=sum((((mu+lambdac)/(phic+lambdac))"k1)/k1! ,k1=0..1);

k1:='k1’:

Gtrunc2:=sum((((mu+lambdac)/(2 * phictlambdac))“k1)/k1!, k1=2..Lq);

k1l:="k1"

Gtrunc3:=sum((((2 * mu-+lambdac+phic)/(phic+lambdac+mu))°k1)/k1!,k1=0..1);
k1l:="k1"

Gtrunc4:=sum(sum((((k2 * mu+lambdac+2 * phic)/(2 * phic+lambdac+(k2-1) *mu))kl1)
/k1!, k1=2..Lq),k2=2..m-1);

k1l:=k1": k2:='k2"

Gtrunc5:=sum((((m * mu+lambdac+2 * phic)/(phic+lambdac+(m-1) *mu))kl1)

/k1!,k1=0..Lq+1);

k1l:="k1"

Gtrunc6:=sum((((phic+lambdac)/(m * mu+lambdac))“k1)/k1!, k1=0..Lq);
k1:='k1’:

Gtrunc:= Gtruncl+Gtrunc2+Gtrunc3+Gtrunc4+Gtrunc5+Gtr unce;
totalp:=0;

for t from O to 1 do

vmivc[t][1][0]:= ((((mu+lambdac)/(phic+lambdac))t)/ th/Gtrunc;

="t
for t from 2 to Lg do

vmivc[t][2][0]:= ((((mu+lambdac)/(2 * phic+lambdac))"t)/t!)/Gtrunc;

Appendix C: Related Scripts

173

="t
for t from O to 1 do
vmive[O][t][1]:= ((((2
od;
t="t"
for t from 2 to Lg do
for n from 1 to m-1 do
vmivet][2][n]:= ((((n
(2 * phic+tlambdac+(n-1)
od;
od;
="t n:='n"
vmivc[0][0][m-1]:= 1/Gtrunc;
for t from O to Lg do

vmivc[t][1][m-1]:= ((((m

* mu+lambdac+phic)/(phic+lambdac+mu))t)/t!)/Gtrunc;

* mu+lambdac+2 * phic)/

*mu))"t)/t!)/Gtrunc;

* mu+lambdac+2 * phic)/

(phic+lambdac+(m-1) *mu))"t)/t")/Gtrunc;

od;
="t

for t from 0 to Lg do

vmivc[t][0][m]:= ((((phic+lambdac)/(m * mu-+lambdac))“t)/t!)/Gtrunc;

="t

Bc:= sum(vmivc[Lq][2][t],t=0..m-2)+vmivc[Lq][1][m-1]

="t
Pc:= 1-(Bc"Nc);

[Nh,Nw,Nc] <-PMM(Ph, Pi)

(Fig5: Pool Management Sub-mode)]

Not in use Nh:=10: Nw:=10: Nc:=10:

+vmivc[Lg][0][m];

174 Appendix C: Related Scripts

Gtrunc:=0: Gtruncl:=0: Gtrunc2:=0: Gtrunc3:=0: rho1:=0: rho2:=0: rho3:=0:
i =T k= kdi='kl

i:=Nh; j:=Nw; k:=Nc;

totalp:=0:

rhol:=FRw/RPi;

rho2:=RPi/FRw;
rho3:=(FRc+FRw)/(FRc+SU+RPi);
rho4:=(SU+FRw+RPi)/(SU+FRw+RPi);
rho5:=(SU+2 * RPi)/(FRw+RPi);

totalpower:= O;

SUw:=3: SUc:=2: RPi:=1: SU:=2:
FRw:=1/(lambdast = * BPqO* (1-Ph)+(1/SUw)):
FRc:=1/(lambdast * BPqO* (1-Ph)+(1/SUc)):
Gtruncl:=sum((rho1"k1)/k1!, k1=0..i+-1);
k1l:="k1"

Gtrunc2:=sum((rho2"k1)/k1!, k1=0..j-1);
k1:='k1’:

Gtrunc3:=sum((rho3"k1)/k1!, ki1=j..j+k);
k1:="k1"

Gtrunc4:=sum((rho4°k1)/k1!, kl1=j..j+k-1);
k1l:="k1"

Gtrunc5:=sum((rho57k1)/k1!, ki1=j-1..j+k-2);
k1:='k1’:

Gtrunc:= Gtruncl+Gtrunc2+Gtrunc3+Gtrunc4+Gtruncs;
mp:='mp”:

Ncalculatori:=0:

Ncalculatorj:=0:

#Ncalculatork:=0:

Appendix C: Related Scripts 175

for mp from 0 to i do
pmiv[i-mp][jllk+mp]:= ((rhol"mp)/mp!)/Gtrunc;
timeiv[i-mp][jl[k+mp]:= (1/RPi) *((i-mp) *POWER_UNIT+j energyfact *POWER_UNIT);

totalpower:= totalpower+timeiv[i-mp][jl[k+mp];

Ncalculatori := Ncalculatori+(i-mp) * pmiv[i-mp][j][k+mp];
Ncalculatorj := Ncalculatorj+j * pmiv[i-mp][jl[k+mp];
#Ncalculatork := Ncalculatork+(k+mp) * pmiv[i-mp][j][k+mp];
od;
mp:='mp":

for mp from 0 to j-2 do
pmiv[O][j-mp][k+i+mp]:= ((rhol"(mp+i))/(mp+i)!)/Gtru nc;
timeiv[0][j-mp][k+i+mp]:= (1/RPi) *((-mp) =*energyfact *POWER_UNIT);

totalpower:= totalpower+timeiv[0][j-mp][k+i+mp];

Ncalculatorj := Ncalculatorj+(j-mp) * pmiv[O][j-mp][k+i+mp];
#Ncalculatork := Ncalculatork+(k+i+mp) * pmiv[0][j-mp][k+i+mp];
od;
mp:='mp’:

for mp from 0 to j-1 do
pmiv[i+mp][j-mp][k]:= ((rho2"mp)/mp!)/Gtrunc;
timeiv[i+mp][j-mp][k]:= (1/FRw) *((i+mp) *POWER_UNIT+
(-mp) =*energyfact *POWER_UNIT);

totalpower:= totalpower+timeiv[i+mp][j-mp][k];

Ncalculatori := Ncalculatori+(i+mp) * pmiv[i+mp][j-mp][K];
Ncalculatorj := Ncalculatorj+(j-mp) * pmiv[i+mp][j-mp][K];
#Ncalculatork := Ncalculatork+k * pmiv[i+mp][j-mp][K];

od;

mp:="mp":

for mp from 0 to k do

176 Appendix C: Related Scripts

pmiv[i+j+mp][0][k-mp]:= ((rho3"(mp+j))/(mp+j)!)/Gtru nc;
timeiv[i+j+mp][0][k-mp]:= (1/(FRc+SU+RPI)) *((i+j+mp) *POWER_UNIT);

totalpower:=totalpower+timeiv[i+j+mp][0][k-mp];

Ncalculatori := Ncalculatori+(i+j+mp) * pmiv[i+j+mp][0][k-mp];
#Ncalculatork := Ncalculatork+(k-mp) * pmiv[i+j+mp][0][k-mp];
od;
mp:='mp”:

for mp from 0 to k-1 do
pmiv[i+j+mp][1][k-mp-1]:= ((rhod™(mp+j))/(mp+))!)/Gt runc;
timeiv[i+j+mp][1][k-mp-1]:= (L/(SU+FRw+RPI)) * ((i+j+mp+energyfact)
* POWER_UNIT);
totalpower:= totalpower+timeiv[i+j+mp][1][k-mp-1];
Ncalculatori := Ncalculatori+(i+j+mp) * pmiv[i+j+mp][1][k-mp-1];
Ncalculatorj := Ncalculatorj+pmiv[i+j+mp][1][k-mp-1];
#Ncalculatork := Ncalculatork+(k-mp-1) * pmiv[i+j+mp][1][k-mp-1];

od;

mp:='mp’:

for mp from 0 to k-1 do
pmiv[i+j+mp-1][2][k-mp-1]:= ((rho5"(mp+j-1))/(mp+j-1))/Gtrunc;
timeiv[i+j+mp-1][2][k-mp-1]:= (1L/(FRw+RPi)) *((i+j+mp-1+(2 *energyfact))
* POWER_UNIT);

totalpower:= totalpower+timeiv[i+j+mp-1][2][k-mp-1];

Ncalculatori := Ncalculatori+(i+j+mp-1) * pmiv[i+j+mp-1][2][k-mp-1];
Ncalculatorj := Ncalculatorj+2 * pmiv[i+j+mp-1][2][k-mp-1];
#Ncalculatork := Ncalculatork+(k-mp-1) * pmiv[i+j+mp-1][2][k-mp-1];
od;
mp:="mp":

Nh:=Ncalculatori;

Appendix C: Related Scripts

177

Nh:= ceil(Nh);
Ncalculatori:=0:

if (Nh=0) then
Nh:=1:

end if;
Nw:=Ncalculatorj;
Nw:= ceil(Nw);
Ncalculatorj:=0:

if (Nw=0) then
Nw:=1:

end if;

Nc:= Ntotal-(Nh+Nw);
Nhvar:=0: Nhmean:=0:
mp:="mp’:

for mp from 0 to i do

Nhvar := Nhvar+((i-mp-Nh)"2) * pmiv[i-mp][j][k+mp]:

Nhmean:= Nhmean + (i-mp) *pmiv[i-mp][j][k+mp]:
od;
mp:='mp”:
for mp from 0 to j-2 do

Nhvar := Nhvar+((0-Nh)"2) * pmiv[O][j-mp][k+i+mp]:
od;
mp:='mp":

for mp from 0 to j-1 do

Nhvar := Nhvar+((i+mp-Nh)"2) * pmiv[i+mp][j-mp][K]:

Nhmean:= Nhmean + (i+mp) *pmiv[i+mp][j-mp][K]:

#Ncalculatorj := Ncalculatorj+(j-mp) * pmiv[i+mp][j-mp][K];

od;

178 Appendix C: Related Scripts

mp:='mp”:
for mp from 0 to k do
Nhvar := Nhvar+((i+j+mp-Nh)"2) * pmiv[i+j+mp][0][k-mp]:
Nhmean:= Nhmean + (i+j+mp) *pmiv[i+j+mp][O][k-mp]:
od;
mp:="'mp":
for mp from 0 to k-1 do
Nhvar := Nhvar+((i+j+mp-Nh)"2) * pmiv[i+j+mp][1][k-mp-1]:
Nhmean:= Nhmean + (i+j+mp) *pmiv[i+j+mp][1][k-mp-1]:
od;
mp:='mp".
for mp from 0 to k-1 do
Nhvar := Nhvar+((i+j+mp-1-Nh)"2) * pmiv[i+j+mp-1][2][k-mp-1]:
Nhmean:= Nhmean + (i+j+mp-1) *pmiv[i+j+mp-1][2][k-mp-1]:
od;
mp:='mp”:
Nhvaraverage := Nhvaraverage+Nhvar;
BPgl <-RASM(Ph,Pw,Pc)
rhol:=(alphac+lambdast+(Ph *alphah)+(Pw = alphaw))/(alphah+lambdast);
rho2:=(alphah * (1-Ph)+lambdast)/(alphaw+lambdast);
rho3:=(alphaw * (1-Pw)+lambdast)/(alphac+lambdast);

#lastrhol:= ((lambdast/alphah)’Lq)/Lq!;

#lastrhol:=(((alphac+lambdast+(Ph +alphah)+(Pw *alphaw))/alphaw)’Lq)/Lq!;
lastrhol:=(((lambdast+(Ph *alphah)+(Pw *alphaw))/(alphaw))"Lq)/Lq;
lastrho2:= (((alphah * (1-Ph)+lambdast)/alphaw)’Lq)/Lq!;

lastrho3:= (((alphaw * (1-Pw)+lambdast)/alphac)"Lq)/Lq!;
Gtruncl:=sum((rho1"k1)/k1!, k1=0..Lg-1);

k1="k1"

Appendix C: Related Scripts

179

Gtrunc2:=sum((rho2°k1)/k1!, k1=0..Lg-1);
k1="k1"
Gtrunc3:=sum((rho3"k1)/k1!, k1=0..Lg-1);
k1="k1"
Gtrunc:=Gtruncl+Gtrunc2+Gtrunc3+lastrhol+lastrho2+l
for i from O to 2 do
for j from 0 to Lg-1 do
if (i=0) then
resiv[illjil:= ((rhol%)/jH/Gtrunc;
elif (i=1) then
resiv[il[il:= ((rho27)/jh/Gtrunc;
else
resiv[i][il:= ((rho37)/j")/Gtrunc;
end if;
od;
od;
resiv[0O][Lq]:=lastrhol/Gtrunc;
resiv[1][Lq]:=lastrho2/Gtrunc;
resiv[2][Lq]:=lastrho3/Gtrunc;
BPql:= resiv[0][Lq]+resiv[1][Lg]+resiv[2][Lq];
#diff <-|(BPgl - BPqO)|
differc := abs(BPql-BPq0);
#BPq0 <-BPql

BPq0:= BPql:

Calculate BPr according to Equation (3) in the paper.

astrho3;

BPr:= sum((alphac *(1-Pc) =+resiv[2][k1])/(alphac+lambdast), k1=0..Lq);

180

Appendix C: Related Scripts

k1="k1"

End of the main loop

end do:

sumresiv:i= 0:

Q_res_average:= 0:

for j from 0 to Lq do
for i from 0 to 2 do

sumresiv:= sumresiv + resiv[i][j]:

od:
Q_res_average:= Q_res_average + | * sumresiv:
sumresiv:= 0:
od:
==Y
wt:= Q_res_average / (lambdast * (1-BPq0));
lut:= ((1/alphah)+((1-Ph) * (1/alphaw))+((1-Pw)

if (counter=maxim) then
BPqO:= -1,

end if;

#Return BPq0 and Preject.
BPqO;

BPr;

Preject:= BPqO+BPr;

Nhvaraverage:= Nhvaraverage/counter;

Nhdev := sqrt(Nhvaraverage);
Q_res_average;

Nhmean;

PMwt := Nhmean/FRw;

="t

* (1/alphac)))/(1-BPq0);

Appendix C: Related Scripts

181

vprovision_total :=0:
for t from O to 1 do

vprovision_total := vprovision_total + t

t="t"
for t from 2 to Lg do
vprovision_total := vprovision_total + t
od:
t="t"
for t from O to 1 do
vprovision_total := vprovision_total + t
od:
t="t"
for t from 2 to Lg do
for n from 1 to m-1 do
vprovision_total := vprovision_total + t

od;

for t from 0 to Lg do

vprovision_total := vprovision_total + t

="t
for t from O to Lg do
vprovision_total := vprovision_total + t
od:
t="t"

vprov_delay := vprovision_total/lambdah;

* vmivh[t][1][0]:

* vmivh[t][2][O]:

« vmivh[O][t[1]:

*vmivh[t][2][n]:

*vmivh[t][1][m-1]:

*vmivh[t][0][m]:

182 Appendix C: Related Scripts

total_delay := vprov_delay + wt + lut + PMwt;

coeffi := Nhdev/Nhmean;

C.2 Admission Control Algorithms

C.2.1 Admission Control Model Based on Offered Load

mu:= 1/2400;

R:=1000:

utilT:=0.75:

lambda:="lambda’;

dis := proc (k, ind, T) options operator, arrow;

local tmp, discourage, disca:

description "produces discourage coefficient beyond the t hreshold";
discourage:= 1- (k-T)/(R-T):
discourage:= 1/(k+1):
in this case after threshold T we admit only T/R of the tasks
discourage:= (T)/(R):
here discouragement depends on offered load above some thr eshold
we relate rho_T= T/R so in this script T should be T=R *rho_t

below the threshold disc is equal to 0O but we do not call it
discourage := max(0, (rho[ind]- T/R));

here max function is not needed since we start admission whe n

H OF O OH O OF O OH O HF OH O H OH®

utilllind]>utilT
discourage := 1 - (rho[ind] - utilT) ;

tmp:= discourage:

Appendix C: Related Scripts

183

return(tmp);
end proc:
this procedure returns offered load into state k beyond th
offload := proc (k, ind, T) options operator, arrow;

local tmp:

description "produces offered load for state k in Markov cha

tmp:= dis(k, ind, T) * lambda / (mu =*Kk) :
return(tmp);
end proc:
##H#t# this procedure returns probability state k beyond the t
PT := proc (k, lind, T) options operator, arrow;
local tmp, i
description "produces probability of state k beyond the thr
tmp:= Pt[0] =*(lambda/mu)’T /T! *
product(offload(li,lind, T), li=T+1..k) :
return(tmp);
end proc:
this procedure returns color of plot, to be used in plot c
for a distribution of MC
colr := proc (k) options operator, arrow;
local tmp::string:
description "produces color of plot";

if k=1 then tmp:="red": elif k=2 then tmp:="blue"; elif k=3 t

tmp:="brown"; elif k=4 then tmp:="green"; elif k=5 then

tmp:="black": end if:
return(tmp);

end proc:

e threshold

hreshold

eshold";

ommand

hen

184 Appendix C: Related Scripts

for lind from 12 to 28 do
print(‘lind=‘, lind);
lambda = (lind *100)/(2 =*3600):

rho[lind]:= lambda/(R *mu):
Probability that system is empty comes from normalization condition
P[O]:= 1/ (1 + sum((lambda/mu)7i /i! , i=1.R)):

Pp[O][lind]:= PIOJ:
#individual state probabilities when we do not have the thes hold
for | from 1 to R do

Pll:= P[0] *(lambda/mu) /I

="
we plot the distribution
for i from 0 to R do

Point_p[i]:= [i, P[]l

=
segP[lind]:= [seq(Point_pl[i], i=0..R)]:
plotP[lind]:= plot(seqP[lind], axes=boxed, style=point ,
symbol=box,symbolsize=16, color=colr(1), labels=[k,"" D:
test for normalization must be 1 always
="
test[lind] := add(P[l], 1=0..R);

Pb[lind:= P[R]:

util[lind]:= sum(PI[jj] *jj, ji=0..R):
now we check if admission control should be triggered, by comparing
to threshold normalized utilization for preparation we se t threshold

to be R this can be changed in following if construct

Appendix C: Related Scripts 185

T[lind]:=R:
myT[lind]:=R:
if utilllind]/R > utilT then
we need to introduce the threshold and to try to find it under given
discouragement threshold has to be an integer but solution will be
a real number so we need rounding
disc[lind]:= dis(1, lind, T): Tf:= floor(Tt):
Ptl0]:= 1/ (1 + sum((lambda/mu)i /it | i=1.Tf)
+ sum((lambda/mu)°Tt /Tt! * product(offload(i,lind,Tf),
i=Tf+1..k), k=Tf +1..R)):
utiln:= sum((Pt[0]/jj") * ((lambda/mu)7j) *jj, jj=0..Tf)
+ sum((Pt[0]/ko!) * ((lambda/mu)"Tt) *
((offload(ko, lind,Tf))"(ko-Tt)) * ko, ko=Tf +1..R):
we want utilization to be equal or as close to limiting util T
exact solutions would not work since utilization can not be exactly
equal to utilT but we need approximations in the form floor(Tt)
egnl:= utiin/R = utilT :
sols:= fsolve(eqnl, Tt, Tt=utilT * R-10..R):
watch out this T[lind] is not an integer
Ti[lind]:= subs(Tt=sols, Tt);
T[lind]:= floor(Ti[lind]);
utilllind]:= subs(Tt=sols, utiln);
Pth[0]:= evalf(subs(Tt=T[lind], Pt[0]));
for j from floor(utilT *R) to R-1 do
xutill[j]:= evalf(subs(Tt=j, utiln));
deltafj]:= abs(utilT- xutil[j/R)
od:

=

186 Appendix C: Related Scripts

deltaseq[lind]:= seq(delta[j], j=floor(utilT *R)..R-1):
mydelta[lind]:= min(deltaseq[lind]);
for j from floor(utilT *R) to R-1 do
if delta[jl=mydelta[lind] then
mythresh[lind]:= j; myutil[lind]:= xutil[j];
fi:
od:
this value is for the reference, we use solutions from the eq
myT[lind]:= mythresh(lind];
for | from 1 to T[lind] do
Pt[ll:= Pth[0] * (lambda/mu)7l /1!
od:
="
for | from T[lind]+1 to R do

Pt[ll:= Pth[0] * (lambda/mu)"myT([lind] /myT[lind]! *

product(offload(li,lind, myT[lind]), li=myT[lind]+1..

od:
we plot the distribution
for i from 0 to R do

Point_pt[il:= [i, Pt

seqPt[lind]:= [seq(Point_pt[i], i=0..R)]:
plotPt[lind]:= plot(seqPt[lind], axes=boxed, style=poi nt,
symbol=box,symbolsize=16, color=colr(1), labels=[k, ™
test for normalization must be 1 always;
=T

testtflind] := Pth[0]+add(Pt[l], I=1..R);

uation

D:

Appendix C: Related Scripts

187

Pb[lind]:= sum(Pt[ko], ko=T[lind]+1..R)
else
disc[lind]:=1:
end if: # utilT
final_lambda][lind]:=disc[lind] * lambda;
Point_finlamb[lind]:=[rho[lind], final_lambda][lind]]
PointPtO[lind]:= [rhol[lind], Pth[O]];
PointPbt[lind]:= [rho[lind], Pb[lind]];
Point_util[llind]:= [rho[lind], util[lind]/10];
Point_dis[lind]:= [rho[lind], disc[lind]];
Point_thrsh[lind]:= [rho[lind], T[lind]];
Point_mythrsh[lind]:= [rho[lind], myT[lind]];
Point_test[lind]:= [rho[lind], test[lind]];

Point_zero[lind]:= [rho[lind], O];

od;

C.2.2 Admission Control Model Based on Current Utilization

mu:= 1/2400;

R:=1000:

utilT:=0.75:

lambda:="lambda’;

Fcr:="Fcr’:

Tf:

Tt:

=T

=Tt

offload := proc (k, ind, T) options operator, arrow;

188 Appendix C: Related Scripts

local tmp:

description "produces offered load for state k in Markov
chain®;

tmp:= Fcr * lambda / (mu =*k) :

return(tmp);

end proc:

##HH# this procedure returns probability state k beyond the t hreshold
PT := proc (k, lind, T) options operator, arrow;
local tmp, i
description "produces probability of state k beyond the
threshold";
tmp:= Pt[0] *(lambda/mu)’T /T! *
product(offload(li,lind, T), li=T+1..k):
return(tmp);

end proc:

###H# this procedure returns color of plot, to be used in plot ¢ ommand
#for a distribution of MC
colr := proc (k) options operator, arrow;

local tmp::string:

description “"produces color of plot";

if k=1 then tmp:="red": elif k=2 then tmp:="blue"; elif k=3

then tmp:="brown";
elif k=4 then tmp:="green”; elif k=5 then tmp:="black™ end

return(tmp);

end proc:

for lind from 12 to 28 do

Appendix C: Related Scripts 189

print(‘lind=*, lind);
lambda := (lind *100)/3600:
rho[lind]:= lambda/(R *mu):
Probability that system is empty comes from normalization condition
P[0]:= 1/ (1 + sum((lambda/mu)7i /il , i=1..R)):
Pp[O][lind]:= PIO]:
#individual state probabilities when we do not have the thes hold
for | from 1 to R do

Pll]:= P[O] * (lambda/mu)7l /1!

="I"
we plot the distribution
for i from O to R do

Point_pil:= [i, P[il:

seqP[lind]:= [seq(Point_pJi], i=0..R)]:

plotP[lind]:= plot(seqP[lind], axes=boxed, style=point
symbol=box,symbolsize=16, color=colr(1), labels=[k, ™ :

test for normalization must be 1 always

="

test[lind] := add(P[l], 1=0..R);

Pbllindl:= P[R] :

myutil[lind]:= sum(PIjj] *jj, Jj=0..R):

myT[lind]:=R:
if utilllind/R > utilT then

Tf:= floor(Tt):

=1 k='k ji=pr ko:='ko: =it KE=KI:

190 Appendix C: Related Scripts

Pt[0]:= 1/ (1 + sum((lambda/mu)7i /i! , 1=1LTE)
+ sum((lambda/mu)°Tt /Tt! * product(offload(i,lind,Tf),
i=Tf+1..k), k=Tf +1..R)):
utiln:= sum((Pt[0]/jj") * ((lambda/mu)7j) *jj, ji=0..Tf)
+ sum((Pt[0)/ko!) * ((lambda/mu)"Tt) *
((offload(ko, lind, Tf))*(ko-Tt)) * ko, ko=Tf +1..R):
norml:= sum((Pt[O]/ii!) * ((lambda/mu)7ii), ii=0..Tf)
+ sum((Pt[O)/kI!) * ((lambda/mu)"Tt) *
((offload(kl, lind,Tf))"(kl-Tt)), kI=Tf+1..R):
we want utilization to be equal or as close to limiting util T
exact solutions would not work since utilization can not be
equal to utilT but we need approximations in the form floor(
for j from floor(utilT *R) to R-1 do
= ke='k: =l ko:='ko =i k=K
xutil[j]:= evalf(subs(Tt=j, utiln));
normx[jl:=evalf(subs(Tt=j, norml));
egn:= normx[jJ/R =1:
sols:='sols’
sols:= fsolve(eqn, Fcr, Fcr=0..1);
filt[j]:= subs(Fcr=sols, Fcr);
deltafj]:= abs(utilT- xutil[j/R)
od:
=T
deltaseq[lind]:= seq(delta[j], j=floor(utilT *R)..R-1):
mydelta[lind]:= min(deltaseq[lind]);
for j from floor(utilT *R) to R-1 do
if delta[j]l=mydelta[lind] then

mythresh[lind]:= j; myutil[lind]:= xutil[j];

exactly

Tt)

Appendix C: Related Scripts 191

disc[lind]:= filt[j];
fi :
od:
this value is for the reference, we use solutions from the eq uation
myT[lind]:= mythresh][lind];
for | from 1 to T[lind] do

Pt[l]:= Pth[0] * (lambda/mu)l /1!

[:="T"
for | from T[lind]+1 to R do
Pt[ll:= Pth[0] * (lambda/mu) myT[lind] /myT[lind]! *
product(offload(li,lind, myT[lind]), li=myT[lind]+1.. N :
od:
we plot the distribution
for i from 0 to R do

Point_pt[i]l:= [i, Pt[i]]:

i="

seqPt[lind]:= [seq(Point_pt[i], i=0..R)]:

plotPt[lind]:= plot(seqPt[lind], axes=boxed, style=poi nt,
symbol=box,symbolsize=16,

color=colr(1), labels=[k, ™):

="

testt[lind] := Pth[0]+add(Pt[l], I=1..R);

Pb[lind]:= sum(Pt[ko], ko=T[lind]+1..R)

else
disc[lind]:=1:

end if: # utilT

192 Appendix C: Related Scripts

final_lambda[lind]:=disc[lind] * lambda:
Point_finlamb[lind]:=[rho[lind], final_lambda][lind]]

PointPtO[lind]:= [rhol[lind], Pth[0]];
PointPbt[lind]:= [rhol[lind], Pbllind]];
Point_util[lind]:= [rho[lind], util[lind]/10];
Point_dis[lind]:= [rho[lind], disc[lind]];
Point_thrsh[lind]:= [rho[lind], T[lind]];
Point_mythrsh[lind]:= [rho[lind], myT[lind]];
Point_test[lind]:= [rho[lind], test[lind]];
Point_zero[lind]:= [rho[lind], O];

od;

C.3 Resource Allocation Solution for Clouds with Mobile

Devices

Algorithm 8 The Integrated model Algorithm

(The full priority of overflow task Scheme)

#
#
Input: Initial successful provisioning probability
and overflow rate: Ps0,000

Output: Blocking probability in the RAM: BPqO
count = 0; maximum = 30; diff = 1;
Digits:=20:

differc:=1:

maxim:=30:

Lg:=50;

N:=100:

Appendix C: Related Scripts

193

lambdast:=600/3600:

Ps0:=0.8:

0o00:= 1/60;

A= 1.

Ro:=0:

Rn:=0:

mu:=1/2400:

betav:=1/0.1;

etav:i=10 = betav:

flag:=0:

#Pbg0 <- RAM (Ps0,000)

rhol:=(lambdast+(2 * PsO+ betav))/(Oo0+lambdast+(Ps0
rho2:=(lambdast+0O00+(Ps0 * betav))/(Oo0+lambdast+(Ps0
rho3:=(lambdast+Oo00+etav)/(lambdast+betav);

rhod:= ((1-Ps0) * betav)/etav;

lastrho3:=(((1-Ps0) * betav)/etav)"Lq)/Lq!;
Gtruncl:=sum((rho1°k1)/k1!, k1=0..Lq);

k1="k1"

Gtrunc2:=sum((rho2"k1)/k1!, k1=0..Lq);

k1="k1"

Gtrunc3:=sum((rho3"k1)/k1!, k1=0..Lq);

k1="k1"

Gtrunc4:=sum((rho4"k1)/k1!, k1=0..Lq);

k1="k1"
Gtrunc:=Gtruncl+Gtrunc2+Gtrunc3+Gtrunc4+lastrho3;
=

for i from 0 to Lg do

for j from 0 to Lg do

* betav));

* betav));

194 Appendix C: Related Scripts

if (i=0) then
resiv[i][jl[Al:= ((rhol%j)/j"/Gtrunc;
elif (i>0 and i<Lq) then
resiv[iljl[A]:= ((rho27))/j")/Gtrunc;
else
resiv[i][jI[Al:= ((rho37)/j!)/Gtrunc;
end if;
od;
od;
resiv[0][Lqg][Rn]:=lastrho3/Gtrunc;
BPqO:=resiv[O][Lg][RnN]:
=
for j from 0 to Lg do
resiv[Lq][jl[Ro]:= ((rho47j)/j")/Gtrunc;
BPg0:= BPg0 + resiv[Lq][j][RO];
od;
=T
for i from 0 to Lg do
BPg0:= BPq0 + resiv[i][Lq][A];
od;
i
bphi:=1:
#while diff >= 10°-6 do
Nhvaraverage := O:
counter:="counter’:
for counter from 1 to maxim while differc > 0.000001 do
[Ps, Oo] <-VMM(BPQO0)

i =y k="K k1i='k1: k2:='k2”

Appendix C: Related Scripts 195

m:=10: L:=4: d:=1/2400:
lambdai:=lambdast * (1-BPq0)/N:
lambdaci:= 0.3 *lambdai:
if (flag=0) then
cphi:= bphi:
Oo:= 0.1 =+ lambdai:
Oi:i= 0.1 * lambdai:
flag:i= 1:
else
cphi:= 0.5 = bphi:
end if:
Gtruncl:='Grtuncl: Gtrunc2:='Grtunc2’: Gtrunc3:='Grt unc3’:
Gtrunc4:='Grtunc4’: Gtrunc:='Gtrunc’:
rhol:=(lambdai+mu+0o)/(lambdai+Qi+bphi);
rho2:=(lambdai+bphi+Qi+2 * mu+0o)/(lambdai+cphi+Oi+mu+00);
rho3:=(lambdai+cphi+d+0i+3 * mu+0Oo)/(lambdai+Oi+2 * mu+Oo+cphi+L * lambdaci);
rho4:=(lambdai+cphi+d+Oi)/(lambdai+Oi+cphi+L * lambdaci+3 * mu+0o0));
Gtruncl:=sum((rho1°k1)/k1!, k1=0..Lq);
k1="k1"
Gtrunc2:=sum(sum((rho2°k1)/k1!, k1=0..Lq) * ((L-k2+1)
*lambdaci+(k2+1) *d)/((L-k2) *lambdaci+k2 *d),k2=0..L);
k1:='k1: k2:='k2"
Gtrunc3:=sum(sum((rho3°k1)/k1!, k1=0..Lq) * ((L-k2+1)
*lambdaci+(k2+1) *d)/((L-k2) *|lambdaci+k2 *d),k2=0..L);
k1:="k1: k2:='k2"
Gtrunc4:=sum(sum((rho4°k1)/k1!, k1=0..Lq) * ((L-k2+1)
*lambdaci+(k2+1) *d)/((L-k2) *lambdaci+k2 *d),k2=0..L);
k1:="k1: k2:='k2"

196

Appendix C: Related Scripts

Gtrunc:= Gtruncl+Gtrunc2+Gtrunc3+Gtrunc4;

for i from 0 to Lg do
for j from 0 to 3 do

if (j=0) then

vmm[i][jl[0]:= ((rhol7))/j")/Gtrunc;

elif (j=1) then
for k from O to L do
vmm[i][jj[k]:= ((rho27))/j!)
* (lambdaci+(k+1) *d)/((L-k)
od;
elif (j=2) then
for k from 0 to L do
vmml[i][jlk]:= ((rho37)/j")
* (lambdaci+(k+1) *d)/((L-k)
od;
else
for k from 0 to L do
vmm[i][jj[k]:= ((rho47))/j!)
* (lambdaci+(k+1) *d)/((L-k)
od;
end if;
od;
od;
i =y k=K
capphi:=0:
for i from 0 to Lg do

for j from 0 to 3 do

for k from 3 to 5 do

* ((L-k+1)

* lambdaci+k *d))/Gtrunc;

«((Lke1)

* lambdaci+k *d))/Gtrunc;

% ((L-k+1)

* lambdaci+k *d))/Gtrunc;

Appendix C: Related Scripts 197

capphi = capphi+vmm[i][j][K];
od;
od;
od;
i =T k=K
Pna:=vmm[Lq][0][0]+ sum(sum(vmm[Lq][k1][k2], k1=1..3) ,k2=0..L)+capphi;
k1:="k1: k2:='k2"
Ps:=1-(Pna"N);
#Pbgl <- RAM (Ps,00)

Gtruncl:='Grtuncl’: Gtrunc2:='Grtunc2’: Gtrunc3:='Grt unc3’:
Gtrunc4:='Grtunc4’:Gtrunc:='Gtrunc’:
rhol:="rhol"
rhol:=(lambdast+(2 * Ps* betav))/(Oo+lambdast+(Ps * betav));
rho2:=(lambdast+Oo+(Ps * petav))/(Oo+lambdast+(Ps * betav));
rho3:=(lambdast+Oo+etav)/(lambdast+betav);
rhod:= ((1-Ps) * betav)/etav;
lastrho3:=(((1-Ps) * petav)/etav)"Lq)/Lq!;
Gtruncl:=sum((rho1°k1)/k1!, k1=0..Lq);
k1="k1"
Gtrunc2:=sum((rho2°k1)/k1!, k1=0..Lq);
k1="k1"
Gtrunc3:=sum((rho3"k1)/k1!, k1=0..Lq);
k1="k1"
Gtrunc4:=sum((rho47k1)/k1!, k1=0..Lq);
k1="k1"
Gtrunc:=Gtruncl+Gtrunc2+Gtrunc3+Gtrunc4+lastrho3;
="

for i from O to Lg do

198 Appendix C: Related Scripts

for j from O to Lg do
if (i=0) then
resiv[i][jI[Al:= ((rhol7)/j")/Gtrunc;
elif (i>0 and i<Lq) then
resiv[i][jl[Al:= ((rho27))/j")/Gtrunc;
else
resiv[il[jI[Al:= ((rho37))/j")/Gtrunc;
end fif;
od;
od;
resiv[0][Lg][Rn]:=lastrho3/Gtrunc;
BPq1:=resiv[0][Lqg][Rn]:
=
for j from 0 to Lg do
resiv[Lq][j][Ro]:= ((rho47j)/j1)/Gtrunc;
BPgl:= BPqgl + resiv[Lq][j][RO];
od;
i
for i from O to Lg do
BPgl:= BPgl + resiv[i][Lq][A];
od;
i
for j from 0 to Lg do

resiv[Lq][j][Ro]:= ((rho47j)/j1)/Gtrunc;

=
#diff <-|(BPgql - BPqO)]

differc := abs(BPqgl-BPq0);

Appendix C: Related Scripts

199

#BPq0 <-BPql
BPgO:= BPql:
==
if (counter=maxim) then
BPqO:= -1;
end if;

od; #end of main loop

Bibliography

[1] B. Abbasov. Cloud Computing: State Of The Art Reseach IssimelcEE 8th Inter-
national Conference onApplication of Information and Comioaition Technologies

(AICT), pages 1-4, Astana, Kazakhstan, October 2014.

[2] A. Ali-Eldin, J. Tordsson, and E. EImroth. An Adaptive biyd Elasticity Controller
for Cloud Infrastructures. IFEEE Network Operations and Management Symposium

(NOMS) pages 204-212, Maui, HI, USA, April 2012.

[3] M. Alicherry and T. V. Lakshman. Network aware resourdieaation in distributed

clouds. INIEEE INFOCOM pages 963-971, Orlando, FL, USA, March 2012.

[4] A. Ashraf, B. Byholm, and I. Porres. A Session-Based Adapfdmission Con-
trol Approach for Virtualized Application Servers. Fifth IEEE International Con-
ference on Utility and Cloud Computing (UC()ages 65-72, Chicago, IL, USA,

November 2012.

[5] J. Baliga, R. W. A. Jayant, K. Hinton, and R. S. Tucker. Grekud computing:
Balancing energy in processing, storage, and transp@roceedings of the IEEE

99(1):149-167, August 2011.

200

Bibliography 201

[6] D. Bertsekas and R. Gallagdbata Networks (2nd Edition)Prentice Hall, 1991.

[7] R. G. Brown. Statistical Forecasting for Inventory ContrdicGraw-Hill, New York,

1959.

[8] W. Caraballo and T. G. Robertazzi. Markov Chain Flow Decosifpan for a Two
Class Priority Queue. I€onference on Information Sciences and Syst@age 1,

Baltimore, MD, USA, March 2003.

[9] D. Chae, J. Kim, J. Kim, J. Kim, S. Yang, Y. Cho, Y. Kwon, andPaek. CM-
cloud: Cloud Platform for Cost-Effective Offloading of Mob#gplications. Inl4th
IEEE/ACM International Symposium on Cluster, Cloud and Grid @otimg, pages

434-444, Chicago, IL, USA, May 2014.

[10] F. Chang, J. Ren, and R. Viswanathan. Optimal resourceaditm in clouds. In
3rd IEEE International Conference on Cloud Computing (CLOURYges 418-425,
Miami, FL, USA, July 2010.

[11] X. Chen. Decentralized Computation Offloading Game FobiéoCloud Comput-

ing. IEEE Transactions on Parallel and Distributed Syste@%&(4):974-983, March
2015.

[12] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. CloneQlo&lastic Execution
between Mobile Device and Cloud. Bth conference on Computer systems (ACM

EuroSys)pages 301-314, Salzburg, Austria, April 2011.

[13] R. B. Cooper.Introduction to Queuing theory: Second Editiddorth Hollad, 1981.

202

Bibliography

[14]

[15]

[16]

[17]

[18]

[19]

[20]

E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. SarBiuChandra, and
P. Bahl. MAUI: making smartphones last longer with code offloén 8th Interna-

tional ACM Conference on Mobil@ages 41-48, Honolulu, HI, USA, June 2012.

D. Dechouniotis, N. Leontiou, N. Athanasopoulos, G.sBiis, and S. Denazis.
ACRA: A Unified Admission Control and Resource Allocation Frarmoekfor Virtu-
alized Environments. 18th International Conference on Network and Service Man-
agement (CNSM) and Workshop on Systems Virtualiztion Mareagg®VM) pages

145-149, Las Vegas, NV, USA, October 2012.

A. Demars, S. Keshav, and S. Shenker. Analysis and itioal of a Fair Queuing

Algorithm. InACM SIGCOMM ’89 pages 3—-26, Austin, TX, USA, September 1989.

Z. Feldman, M. Masin, A. N. Tantawi, D. Arroyo, and M. 8tder. Using approxi-
mate dynamic programming to optimize admission controlaud computing envi-
ronment. InWinter Simulation Conference 2011 (W$S@ages 3153-3164, Phoenix,

AZ, USA, December 2011.

S. Floyd and V. Jacobson. Random Early Detection (RED9wgays for Congestion

Avoidance.lEEE/ACM Transactions on Networkingy(4):397—-413, August 1993.

B. Gao, L. He, L. Liu, K. Li, and S. A. Javis. From Mobiles @ouds: Developing
Energy-aware Offloading Strategies for Workflows A@M/IEEE 13th International
Conference on Grid Computing (GRIDJages 139-146, Beijing, China, September

2012.

L. Guan, Y. Wang, and Y. Li. A Dynamic Resource Allocatiglethod in laaS Based

Bibliography 203

[21]

[22]

[23]

[24]

[25]

[26]

[27]

on Deadline Time. Irl4th Asia-Pacific Network Operations and Management Sym-

posium (APNOMSpages 1-4, Seoul, Korea, September 2012.

L. Guan, M. Song X. Ke, and J. Song. A Survey of Research obiM Cloud Com-
puting. In10th IEEE/ACIS International Conference on Computer and médron

Sciencepages 387-392, Sanya, China, May 2011.

M. A. Hassan, K. Bhattarai, Q. Wei, and S. Chen. POMAC.: Prigp@ffloading
Mobile Applications to Clouds. I6th USENIX Workshop on Hot Topics in Cloud

Computing (HotCloud)pages 1-6, Philadelphia, PA, USA, June 2014.

Y. He, J. Huang, Q. Duan, Z. Xiong, J. Lv, and Y. Liu. A NdvAd-
mission Control Model in Cloud Computing. Januaury 2014. Al@é from

http://arxiv.org/abs/1401.4716v?2 . Last visited: September 1, 2014.

D. T. Hoang, D. Niyato, and P. Wang. Optimal Admission €ohPolicy for Mobile
Cloud Computing Hotspot with Cloudlet. IMEEE Wireless Communications and

Networking Conference (WCN(Q)ages 3145-3149, Shanghai, China, April 2012.

T. Huu and C. Tham. An Auction-based Resource Allocatiad® for Green Cloud
Computing. InIEEE International Conference on Cloud Engineerimpgges 269—

278, Santa Clara, CA, USA, March 2013.

Maplesoft Inc. Maple 15http://www.maplesott.com/products/maple/

Last visited: July 15, 2015.

MathWorks Inc. Simulinkhttp://www.mathworks.com/products/simulink/

Last visited: September 1, 2014.

http://arxiv.org/abs/1401.4716v2
http://www.maplesoft.com/products/maple/
http://www.mathworks.com/products/simulink/

204 Bibliography

[28] P.T.Joy and K. P. Jacob. Cooperative Caching FramewoMdbile Cloud Comput-
ing. Global Journal of Computer Science and Technology Network,&\®&écurity,

13(8):1-7, July 2013.

[29] Y. Kao, B. Krishnamachari, M. Ra, and F. Bai. Hermes: Laye@ptimal Task As-
signment for Resource-constrained Mobile ComputindEEBE Conference on Com-
puter Communications (INFOCOMpages 1894-1902, Hong Kong, China, April

2015.

[30] N. Kaushik and J. Kumar. A Computation Offloading Framegwm Optimize En-
ergy Utilisation in Mobile Cloud Computing Environmerninternational Journal of

Computer Applications & Information Technolod(2):61-69, April 2014.

[31] A. Khalifa and M. Eltoweissy. Collaborative Autonomic $teirce Management Sys-
tem for Mobile Cloud Computing. Iffourth International Conference on Cloud
Computing, GRIDs, and Virtualization (CLOUD COMPUTIN@ages 115-121, Va-

lencia, Spain, May 2013.

[32] H. Khazaei, J. Miic, and V.B. MBic. A Fine-Grained Performance Model of
Cloud Computing CenterslEEE Transaction on Parallel and Distributed Systems

24(11):2138-2147, November 2013.

[33] H. Khazaei, J. MBi¢, and V.B. MBi¢. Analysis of a Pool Management Scheme for
Cloud Computing CenterslEEE Transaction on Parallel and Distributed Systems

24(5):849-861, May 2013.

[34] H. Khojasteh, J. Mii¢, and V.B. MBi¢. Characterizing energy consumption of laaS

Bibliography 205

[35]

[36]

[37]

[38]

[39]

[40]

[41]

clouds in non-saturated operation. IEEE INFOCOM 2014 Workshop on Mobile

Cloud Computingpages 398-403, Toronto, Canada, April 2014.

L. Kleinrock. Queueing Systems, Volume 1: Thedijley-Interscience, 1975.

K. Konstanteli, T. Cucinotta, K. Psychas, and T. Vargati. Admission Control for
Elastic Cloud Services. IRifth IEEE International Conference on Cloud Computing

(CLOUD), pages 41-48, Honolulu, HI, USA, June 2012.

K. Konstanteli, T. Cucinotta, K. Psychas, and T. Vargat. Elastic Admission Con-
trol for Federated Cloud ServicdEEE Transactions on Cloud Computiri2(3):348—

361, July 2014.

S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang. filkAir: dynamic resource
allocation and parallel execution in the cloud for mobilele®ffloading. INIEEE
Conference on Computer Communications (INFOCOMIges 945-953, Orlando,

FL, USA, March 2012.

K. Kumar, J. Feng, Y. Nimmagadda, and Y.-H. Lu. Resourtecation for real-
time tasks using cloud computing. 20th Int. Conf. Computer Communications and

Networks (ICCCN 2011)pages 1-7, Maui, HI, USA, July 2011.

H. A. Lagar-Cavilla, J. A. Whitney, A. Scannell, P. Pattht. M. Rumble, E. Lara,
M. Brudno, and M. Satyanarayanan. SnowFlock: Rapid Virtuativitze Cloning for

Cloud Computing. IPACM EuroSyspages 1-12, Nuremberg, Germany, April 2009.

N. Leontiou, D. Dechouniotis, and S. Denazis. Adaptheemission Control of Dis-

206 Bibliography

tributed Cloud Services. Imternational Conference on Network and Service Man-

agement (CNSMpages 318-321, Niagara Falls, Canada, October 2010.

[42] J. Li, M. Qiu, J. Niu, Y. Chen, and Z. Ming. Adaptive Resoaikllocation for Pre-
emptable Jobs in Cloud Systems.1@th International Conference on Intelligent Sys-

tems Design and Applications (ISDAgrges 31-36, Cairo, Egypt, November 2010.

[43] A. Scheller-Wolf M. Harchol-Balter, T. Osogami and A. &man. Multi-server
gueueing systems with multiple priority class€ueueing Systems: Theory and Ap-

plications 31(3):331-360, December 2005.

[44] V. Mainkar and K. S. Trivedi. Sufficient conditions foxistence of a fixed point in
stochastic reward net-based iterative mod#&EE Transactions on Software Engi-

neering 22(9):640-653, September 1996.

[45] D. C. Marinescu.Cloud Computing: Theory and Practice: First EditiorMorgan

Kaufmann, 2013.

[46] P. Mell and T. Grance. The NIST Definition of Cloud CompgtitNational Institute

of Standards and Technology, Information Technology Latooy, September 2011.

[47] S.P.Mirashe and N. V. Kalyankar. Cloud Computidgurnal of Computing2(3):78—

82, March 2010.

[48] Y. Niu, b. Luo, F. Liu, J. Liu, and B. Li. When Hybrid Cloud M&seFlash Crowd: To-
wards Cost-Effective Service Provisioning. IBEE Conference on Computer Com-

munications (INFOCOM)pages 1044-1052, Hong Kong, China, April 2015.

Bibliography 207

[49]

[50]

[51]

[52]

[53]

[54]

[55]

K. Al Nuaimi, N. Mohamed, M. Al Nuaimi, and J. Al JaroodA Survey of Load Bal-
ancing in Cloud Computing: Challenges and AlgorithmdHEE Second Symposium
on Network Cloud Computing and Applications (NCCpages 137-142, London,

UK, December 2012.

A. C. Olteanu and N. Tapus. Offloading for mobile devic@ssurvey. University

Politehnica of Bucharest (UPB) Scientific Bulleti#6(1):1-14, XX 2014,

M. J. O’'Sullivan and D. Grigoras. Integrating mobiledacloud resources manage-
ment using the cloud personal assistaé®itnulation Modelling Practice and Theory:

Special Issue on Resource Management in Mobile Clda@20-41, January 2015.

D. Puthal, B. P. S. Sahoo, S. Mishra, and S. Swain. Cloud @Qtingp Features,
Issues and Challenges: A Big Picture.liternational Conference on Computational

Intelligence & Networks (CINE)pages 116-123, Odisha, India, January 2015.

G. Rastogi and R. Sushil. Cloud Computing Implementatioay Ksues and Solu-
tions. In2nd International Conference on Computing for Sustainableb@l Devel-

opmentpages 320-324, New Delhi, India, March 2015.

P. Salot. A Survey of Various Scheduling Algorithm in GtbComputing Environ-
ment. International Journal of Research in Engineering and Taatbgy, 2(2):131—

135, February 2013.

Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya. Heteroggnm Mobile Cloud
Computing: Taxonomy and Open ChallengelieEE Communications Surveys &

Tutorials 16(1):369-392, January 2014.

208 Bibliography

[56] S. T. Selvi, C. Valliyammai, and V. N. Dhatchayani. Res@uAllocation Issues and
Challenges in Cloud Computing. 8014 International Conference on Recent Trends

in Information Technologypages 1-6, Chennai, India, April 2014.

[57] C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik, and&gura. COSMOS:
computation offloading as a service for mobile devices13th ACM international
symposium on Mobile ad hoc networking and computing (MobiHmges 287-296,

Philadelphia, PA, USA, August 2014.

[58] M. Shiraz, S. Abolfazli, Z. Sanaei, and A. Gan. A study wrtual machine de-
ployment for application outsourcing in mobile cloud cortipg. The Journal of

Supercomputing3(3):946—964, March 2013.

[59] M. Shiraz and A. Gani. Mobile Cloud Computing: Critical Apsis of Applica-
tion Deployment in Virtual Machinesinternational Conference on Information and

Computer Networks (ICICNR7:11-16, February 2012.

[60] R. Steele Delta Modulation System#$entech Press, London, 1975.

[61] H. Takagi. Queueing Analysis, volume 1: Vacation and Priority Systemsrth-

Holland, 1991.

[62] A. S. Tam, D. Chiu, J. C. S. Lui, and Y. C. Tay. A Case for TCP+kdlig Admission
Control. In14th IEEE International Workshop on Quality of Service (I8&) pages

229-238, New Haven, CT, USA, June 2006.

[63] D. Tammaro, E. Doumith, S. Zahr, J. Smets, and M. Gagnalynamic Resource

Allocation in Cloud Environment Under Time-variant Job Resjge InThird IEEE

Bibliography 209

[64]

[65]

[66]

[67]

[68]

[69]

International Conference on Cloud Computing Technology aneinSe pages 592—

598, Athens, Greece, November 2011.

L. Tomas and J. Tordsson. Improving Cloud Infrastruetdtilization through Over-
booking. INACM Cloud and Autonomic Computing Conference (CGA@pes 1-10,

Miami, FL, USA, August 2013.

T. Tomita and S. Kuribayashi. Congestion control methatth fair resource alloca-
tion for cloud computing environments. IEEE Pacific Rim Conference on Commu-
nications, Computers and Signal Processing (PacRpayjes 1-6, Victoria, Canada,

August 2011.

R. Urgaonkar, U. C. Kozat, K. Igarashi, and M. J. Neely. Bxynic Resource Allo-
cation and Power Management in Virtualized Data CenterslEEEE Network Op-
erations and Management Symposium (NONy&yes 479-486, Osaka, Japan, April

2010.

S. Vakilinia, D. Qiu, and M. Mehmet Ali. Optimal multitchensional dynamic re-
source allocation in mobile cloud computingEURASIP Journal on Wireless Com-

munications and Networkin@01:1-14, November 2014.

D. Warneke and O. Kao. Exploiting Dynamic Resource Adlioan for Efficient Par-
allel Data Processing in the CloudEEE Transactions on Parallel and Distributed

Systems22(6):985-997, June 2011.

L. Xiang, S. Ye, Y. Feng, B. Li, and B. Li. Ready, Set, Go: Caalked Offloading from

210

Bibliography

[70]

[71]

[72]

[73]

[74]

[75]

Mobile Devices to the Cloud. IMEEE Conference on Computer Communications

(INFOCOM), pages 2373-2381, Toronto, Canada, April 2014.

L. Xu, Z. Zeng, and X. Y. Multi-objective Optimization Bad Virtual Resource Al-
location Strategy for Cloud Computing. IEEE/ACIS 11th International Conference

on Computer and Information Sciengages 56—61, Shanghai, China, May 2012.

H. Yuan, C. C. J. Kuo, and I. Ahmad. Energy efficiency in degaters and cloud-
based multimedia services: An overview and future direstioln IEEE Int. Green

Computing Conf.pages 375-382, Chicago, IL, USA, August 2010.

D. Zarchy, D. Hay, and M. Schapira. Capturing Resourceldoéfs in Fair Multi-
Resource Allocation. IHEEE Conference on Computer Communications (INFO-

COM), pages 1062-1070, Hong Kong, China, April 2015.

Q .Zhang, L. Cheng, and R. Boutaba. Cloud computing: sthteesart and research

challengesJournal of Internet Services and Applicatiori$1):7—-18, April 2010.

X. Zhang, C. Wu, Z. Li, and F. C. M. Lau. A Truthful (— ¢)-Optimal Mechanism
for On-demand Cloud Resource Provisioning. IHEE Conference on Computer

Communications (INFOCOMpages 1053-1061, Hong Kong, China, April 2015.

J. Zhao, X. Chu, H. Liu, Y. Leung, and Z. Li. Online Procoment Auctions for
Resource Pooling in Client-Assisted Cloud Storage System&HE Conference on
Computer Communications (INFOCOM)ages 576-584, Hong Kong, China, April

2015.

	Author's Declaration
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Dedication
	Introduction
	Cloud Computing at a Glance
	Essential Characteristics of Cloud
	The Service Models of Cloud
	The Deployment Models of Cloud
	The Layered Models of Cloud
	The Advantages of Cloud Computing

	Major Challenges in Cloud Computing
	Resource Allocation Issues in Cloud
	Cloud Security, Privacy and Reliability
	Server Consolidation
	Energy Management
	Bandwidth
	Traffic Management and Analysis

	General Issues of Mobile Cloud Computing
	Motivations
	The Key Definitions in Cloud Resource Management
	The Components of Cloud Resource Management System
	Resource Management Requirements
	The Requirements of Mobile Cloud Computing

	Objectives
	Main Contributions
	Thesis Organization

	Related Work
	Resource Allocation in Stationary Cloud Computing
	Task Admission Control in Cloud Systems
	Resource Allocation in Mobile Cloud Computing
	The Markov Models with Multiple Priority Classes
	Chapter Summary

	Investigating The Behavior of IaaS Cloud Datacenters
	Characterizing Energy Consumption of IaaS Clouds in Non-saturated Region
	Analytical Model
	Resource Allocation
	Virtual Machine Provisioning
	Pool Management
	Integrated Model

	Performance
	Task Blocking and Total Task Delay
	Pool Management

	Energy Consumption

	Analyzing The Impact of Provisioning Overhead Time in Cloud Centers
	The Model of The Cloud System
	Resource Allocation
	Virtual Machine Provisioning
	Pool Management
	Solving the Integrated Model

	Performance Evaluation
	Cloud System Behavior at Low Loads
	Cloud System Behavior at High Loads
	The Impact of Look up Times on Energy Consumption

	Chapter Summary

	Task Admission Control for Cloud Server Pools
	Task Admission Control Based on Threshold of Task Blocking Probability
	System Model and Its Performance
	System Model
	Performance of The Original Pooled System

	Simple Admission Control Mechanisms
	Performance of Admission Control

	Task Filtering as a Task Admission Control Policy in Cloud Server Pools
	Admission Control Policy
	Controlling Parameters and Related Policies
	Task Admission Scheme Based on Offered Load
	Analytical Model of Admission Control
	Task Admission Scheme Based on Current Utilization

	Performance Evaluation
	Performance Evaluation of Algorithm 5
	Performance Evaluation of Algorithm 6
	Analyzing the Effect of the Size of Waiting Queue and Filtering

	Chapter Summary

	Prioritization of Overflow Tasks to Improve Performance of Mobile Cloud
	Introduction
	Resource Allocation Solution
	The Queueing Model of Resource Allocation
	The Queueing Model of Resource Allocation with Full Priority
	The Queueing Model of Resource Allocation with Threshold-based

	The Queueing Model of Virtual Machine Provisioning
	The Integrated Model

	Performance Evaluation
	Task Blocking Probability
	Mean Task Delay
	Utilization
	The Impact of Queue Threshold Tr
	Task Blocking Probability Through Iterations

	Chapter Summary

	Conclusion
	Abbreviations and Symbols
	Abbreviations
	Symbols and Corresponding Descriptions

	Publications
	Journal Papers
	Conference Papers
	Book Chapters

	Related Scripts
	Resource Allocation Model in a Pooled IaaS cloud
	Admission Control Algorithms
	Admission Control Model Based on Offered Load
	Admission Control Model Based on Current Utilization

	Resource Allocation Solution for Clouds with Mobile Devices

	Bibliography

